COMBUSTION OF HYDROTREATED VEGETABLE OIL IN A DIESEL ENGINE: SENSITIVITY TO SPLIT INJECTION STRATEGY AND EXHAUST GAS RECIRCULATION

被引:0
|
作者
Mikulski, Maciej [1 ]
Vasudev, Aneesh [1 ]
Hunicz, Jacek [2 ]
Rybak, Arkadiusz [2 ]
Geca, Michal [2 ]
机构
[1] Univ Vaasa, Vaasa, Finland
[2] Lublin Univ Technol, Lublin, Poland
关键词
HVO; diesel engine; multi-pulse injection; EGR; COMPRESSION-IGNITION; EMISSION CHARACTERISTICS; TRADE-OFF; PARTICULATE EMISSION; PARTICLE NUMBER; FUEL; PERFORMANCE; HVO; BLENDS; HYDROGEN;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This work explores the potential to optimize advanced common-rail engines for operation with hydrotreated vegetable oil (HVO). The single-cylinder engine research focuses on adjusting the injection strategy and external exhaust gas recirculation (EGR) to achieve the optimum performance-emissions trade-off using HVO. The engine is operated at a fixed rotational speed of 2000 rpm and under constant load (net indicated mean effective pressure of 0.45 MPa). Split fuel-injection strategy is used: main injection timing is fixed but pilot injection is varied both in terms of timing and quantity. The engine tests, without turbocharging, are conducted under non-EGR conditions and using approximately 27% EGR rate. Results with HVO are compared with results when using diesel fuel. Within the constraints of a single, representative operating point, the results highlight that when using the factory map-based injection strategy, HVO offers soot emissions below 0.015 g/kWh, a 50% reduction when compared to diesel fuel. Nitrogen oxides (NOX) emissions at the same conditions are, however, 10% higher than for diesel fuel. That correlates with higher peak in-cylinder pressures and temperatures. Advancing the pilot HVO injection reduced NOX emissions to the level of the diesel baseline, and although soot emissions increased, they remained 25% lower than with diesel. Interestingly, the two tested fuels exhibited very different responses to EGR. Generally, at 27% EGR, HVO produced twice as much soot as diesel. The heat release analysis indicates this sensitivity to EGR stems from HVO's higher cetane number causing faster auto-ignition, resulting in less premixed combustion and hence producing more soot. Generally, HVO offered more complete combustion than diesel fuel. Regardless of pilot fuel injection strategy, CO emission was reduced by approximately 50% with HVO for both EGR and non-EGR conditions. HVO also benefits emissions of unburned hydrocarbons, in terms of both total values and also unlegislated aldehydes and aromatics.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Partially premixed combustion of hydrotreated vegetable oil in a diesel engine: Sensitivity to boost and exhaust gas recirculation
    Hunicz, Jacek
    Mikulski, Maciej
    Shukla, Pravesh Chandra
    Geca, Michal S.
    FUEL, 2022, 307
  • [2] Effects of Hydrotreated Vegetable Oil (HVO) as Renewable Diesel Fuel on Combustion and Exhaust Emissions in Diesel Engine
    Sugiyama, Kouseki
    Goto, Isamu
    Kitano, Koji
    Mogi, Kazuhisa
    Honkanen, Markku
    SAE INTERNATIONAL JOURNAL OF FUELS AND LUBRICANTS, 2012, 5 (01) : 205 - 217
  • [3] Efficient hydrotreated vegetable oil combustion under partially premixed conditions with heavy exhaust gas recirculation
    Hunicz, Jacek
    Matijosius, Jonas
    Rimkus, Alfredas
    Kilikevicius, Arturas
    Kordos, Pawel
    Mikulski, Maciej
    FUEL, 2020, 268 (268)
  • [4] The effect of exhaust gas recirculation on the combustion noise level of an indirect injection diesel engine
    Bowen, CE
    Reader, GT
    Potter, IJ
    IECEC-97 - PROCEEDINGS OF THE THIRTY-SECOND INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, VOLS 1-4: VOL.1: AEROSPACE POWER SYSTEMS AND TECHNOL; VOL 2: ELECTROCHEMICAL TECHNOL, CONVERSION TECHNOL, THERMAL MANAGEMENT; VOLS 3: ENERGY SYSTEMS, RENEWABLE ENERGY RESOURCES, ENVIRONMENTAL IMPACT, POLICY IMPACTS ON ENERGY; VOL 4: POST DEADLINE PAPERS, INDEX, 1997, : 2088 - 2093
  • [5] The effects of split injections on high exhaust gas recirculation low-temperature diesel engine combustion
    Sarangi, Asish K.
    Garner, Colin P.
    McTaggart-Cowan, Gordon P.
    Davy, Martin H.
    Wahab, Emad
    Peckham, Mark
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2013, 14 (01) : 68 - 79
  • [6] Effects of exhaust gas recirculation temperature on diesel engine combustion and emissions
    Ladommatos, N
    Abdelhalim, SM
    Zhao, H
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 1998, 212 (D6) : 479 - 500
  • [7] Effects of exhaust gas recirculation temperature on diesel engine combustion and emissions
    Ladommatos, N.
    Abdelhalim, S.M.
    Zhao, H.
    Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 1998, 212 (06): : 479 - 500
  • [8] Study of Miller timing on exhaust emissions of a hydrotreated vegetable oil (HVO)-fueled diesel engine
    Heikkila, Juha
    Happonen, Matti
    Murtonen, Timo
    Lehto, Kalle
    Sarjovaara, Teemu
    Larmi, Martti
    Keskinen, Jorma
    Virtanen, Annele
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2012, 62 (11) : 1305 - 1312
  • [9] Effects of start of injection and exhaust gas recirculation on dual fuel combustion of isobutanol with diesel and waste cooking oil biodiesel in a diesel engine at higher loads
    Krishnan, M. Gowthama
    Rajkumar, Sundararajan
    FUEL, 2022, 327
  • [10] Effects of start of injection and exhaust gas recirculation on dual fuel combustion of isobutanol with diesel and waste cooking oil biodiesel in a diesel engine at higher loads
    Krishnan, M. Gowthama
    Rajkumar, Sundararajan
    FUEL, 2022, 327