A semi-supervised autoencoder for autism disease diagnosis

被引:22
|
作者
Yin, Wutao [1 ]
Li, Longhai [2 ]
Wu, Fang-Xiang [3 ,4 ]
机构
[1] Div Biomed Engn, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
[2] Univ Saskatchewan, Dept Math & Stat, 106 Wiggins Rd,MCLN 219, Saskatoon, SK S7N 5E6, Canada
[3] Dept Mech Engn, Div Biomed Engn, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
[4] Dept Comp Sci, 57 Campus Dr, Saskatoon, SK S7N 5A9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Artificial intelligence; Semi-supervised learning; Autoencoders; fMRI; Brain disorders diagnosis; STATE FUNCTIONAL CONNECTIVITY; DEEP NEURAL-NETWORK; SPECTRUM DISORDER; CLASSIFICATION;
D O I
10.1016/j.neucom.2022.02.017
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autism spectrum disorder (ASD) is a neurological developmental disorder that typically causes impaired communication and compromised social interactions. The current clinical assessment of ASD is typically based on behavioral observations and lack of the understanding of the neurological mechanism and the progression of the brain development. The functional magnetic resonance imaging (fMRI) data is one of the commonly-used imaging modalities for understanding human brain mechanisms as well as the diagnosis and treatment of brain disorders such as ASD. In this paper, we proposed a semi-supervised autoencoder (AE) for autism diagnosis using functional connectivity (FC) pattern obtained from resting-state fMRI. An unsupervised autoencoder in combination with the supervised classification networks enables semi-supervised learning in which an autoencoder for learning hidden features and a neural network based classifier are trained together. Compared to train the autoencoder and classifier in separate phases, the proposed semi-supervised learning essentially helps tune the latent feature representation learning towards the goal of classification, and thus leads to improvements in autism diagnosis performance. The proposed model is evaluated by using cross-validation methods on ABIDE I database. Experimental results demonstrate that the proposed model achieves improved classification performance, and that the proposed semi-supervised learning framework can integrate unlabelled fMRI data for better feature learning and improved classification accuracy. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:140 / 147
页数:8
相关论文
共 50 条
  • [1] Semi-Supervised Adversarial Variational Autoencoder
    Zemouri, Ryad
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2020, 2 (03): : 361 - 378
  • [2] Improved semi-supervised fault diagnosis of rolling bearings with mask autoencoder
    Chen R.
    Zhang X.
    Zhang X.
    Zhao L.
    Xia L.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2024, 45 (01): : 26 - 33
  • [3] A hybrid classification autoencoder for semi-supervised fault diagnosis in rotating machinery
    Wu, Xinya
    Zhang, Yan
    Cheng, Changming
    Peng, Zhike
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2021, 149
  • [4] Variational Autoencoder for Semi-Supervised Text Classification
    Xu, Weidi
    Sun, Haoze
    Deng, Chao
    Tan, Ying
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3358 - 3364
  • [5] Unified Robust Semi-Supervised Variational Autoencoder
    Chen, Xu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [6] Infinite Variational Autoencoder for Semi-Supervised Learning
    Abbasnejad, M. Ehsan
    Dick, Anthony
    van den Hengel, Anton
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 781 - 790
  • [7] Semi-supervised Variational Autoencoder for Survival Prediction
    Palsson, Sveinn
    Cerri, Stefano
    Dittadi, Andrea
    Van Leemput, Koen
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 : 124 - 134
  • [8] SeGMA: Semi-Supervised Gaussian Mixture Autoencoder
    Smieja, Marek
    Wolczyk, Maciej
    Tabor, Jacek
    Geiger, Bernhard C.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (09) : 3930 - 3941
  • [9] Improved semi-supervised autoencoder for deception detection
    Fu, Hongliang
    Lei, Peizhi
    Tao, Huawei
    Zhao, Li
    Yang, Jing
    PLOS ONE, 2019, 14 (10):
  • [10] Semi-Supervised Recurrent Variational Autoencoder Approach for Visual Diagnosis of Atrial Fibrillation
    Costa, Nahuel
    Sanchez, Luciano
    Couso, Ines
    IEEE ACCESS, 2021, 9 : 40227 - 40239