Correlation theory of a class of n-dimensional piecewise linear Markov systems

被引:0
|
作者
Gotz, M
Schwarz, W
机构
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper the determination of the l-th and 2-th order correlation functions of chaotic sequences is considered. A calculus for n-dimensional fully stretching piecewise Linear systems is given where the spectral decomposition of the Frobenius-Perron-Operator is used. It is shown that the reduction of the operator to finite dimensional subspaces is the core of the calculation method.
引用
收藏
页码:1049 / 1052
页数:4
相关论文
共 50 条
  • [1] LINEAR CONJUGACY OF N-DIMENSIONAL PIECEWISE-LINEAR SYSTEMS
    FELDMANN, U
    SCHWARZ, W
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1994, 41 (02): : 190 - 192
  • [2] Bifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems
    Cardin, Pedro Toniol
    de Carvalho, Tiago
    Llibre, Jaume
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (01) : 143 - 152
  • [3] Slow-fast n-dimensional piecewise linear differential systems
    Prohens, R.
    Teruel, A. E.
    Vich, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (02) : 1865 - 1892
  • [4] On the existence of homoclinic orbits in n-dimensional piecewise affine systems
    Wu, Tiantian
    Yang, Xiao-Song
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2018, 27 : 366 - 389
  • [5] H∞ Control of A Class of Piecewise Homogeneous Markov Jump Linear Systems
    Zhang, Lixian
    ASCC: 2009 7TH ASIAN CONTROL CONFERENCE, VOLS 1-3, 2009, : 197 - 202
  • [6] A class of singular n-dimensional impulsive Neumann systems
    Li, Ping
    Feng, Meiqiang
    Wang, Minmin
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [7] A class of singular n-dimensional impulsive Neumann systems
    Ping Li
    Meiqiang Feng
    Minmin Wang
    Advances in Difference Equations, 2018
  • [8] Piecewise Linear Approximation of n-Dimensional Parametric Curves Using Particle Swarms
    Cleghorn, Christopher Wesley
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE (ANTS 2012), 2012, 7461 : 292 - 299
  • [9] On the strong stabilizability of MIMO n-dimensional linear systems
    Ying, JQ
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 4915 - 4920
  • [10] On the strong stabilizability of MIMO n-dimensional linear systems
    Ying, Jiang Qian
    SIAM Journal on Control and Optimization, 38 (01): : 313 - 335