Lower bounds on the 2-class number of the 2-Hilbert class field of imaginary quadratic number fields with elementary 2-class group of rank 3

被引:0
|
作者
Benjamin, E [1 ]
机构
[1] UNITY COLL,DEPT MATH,UNITY,ME 04988
来源
HOUSTON JOURNAL OF MATHEMATICS | 1996年 / 22卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k be an imaginary quadratic number field with C-k,C-2, the 2-Sylow subgroup of its ideal class group, isomorphic to Z/2Z x Z/2Z x Z/2Z. We formulate lower bounds on the 2-class number of the 2-Hilbert Class Field, k(1), of these fields by examining the capitulation of ideals of k in its seven unramified quadratic extensions. We describe fields Ic for which \C-k1,C-2\ greater than or equal to 8 and \C-k1,C-2\greater than or equal to 16.
引用
收藏
页码:11 / 37
页数:27
相关论文
共 50 条