Statistical downscaling of global climate model outputs to monthly precipitation via extreme learning machine: A case study

被引:8
|
作者
Alizamir, Meysam [1 ]
Moghadam, Mehdi Azhdary [1 ]
Monfared, Arman Hashemi [1 ]
Shamsipour, Aliakbar [2 ]
机构
[1] Univ Sistan & Baluchestan, Dept Civil Engn, Fac Engn, POB 9816745563-161, Zahedan, Iran
[2] Univ Tehran, Fac Geog, Tehran, Iran
关键词
climate change; extreme learning machine; artificial neural network; genetic programming; general circulation model; statistical downscaling; BIAS-CORRECTION; RAINFALL; TEMPERATURE; PROJECTIONS; REGRESSION;
D O I
10.1002/ep.12856
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The present article explores the impacts of climate change on precipitation at station scale in the Minab basin, Iran. The data used for evaluation were large-scale input (predictor) parameters extracted from the reanalysis data set of the National Center for Environmental Prediction and National Center for Atmospheric Research to downscale monthly precipitation. In this research, four approaches were applied to downscale precipitation, including an implementation on extreme learning machine (ELM) for single-hidden layer feedforward neural network, artificial neural network, genetic programming, and quantile mapping. The results indicated that the ELM approach outperformed all other approaches in downscaling the large-scale global climate model atmospheric variables to monthly precipitation at station scale. (c) 2018 American Institute of Chemical Engineers Environ Prog, 37: 1853-1862, 2018
引用
收藏
页码:1853 / 1862
页数:10
相关论文
共 50 条
  • [1] Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation
    Vandal, Thomas
    Kodra, Evan
    Ganguly, Auroop R.
    THEORETICAL AND APPLIED CLIMATOLOGY, 2019, 137 (1-2) : 557 - 570
  • [2] Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation
    Thomas Vandal
    Evan Kodra
    Auroop R. Ganguly
    Theoretical and Applied Climatology, 2019, 137 : 557 - 570
  • [3] Statistical Downscaling of Global Climate Model MIROC_4h Outputs to Precipitation in Rwanda
    Pearl, Nkusi
    Alphonse, Mutabazi
    INNOVATIONS AND INTERDISCIPLINARY SOLUTIONS FOR UNDERSERVED AREAS, INTERSOL 2018, 2018, 249 : 163 - 171
  • [4] Evaluating the effect of the statistical downscaling method on monthly precipitation estimates of global climate models
    Ozbuldu, M.
    Irvem, A.
    GLOBAL NEST JOURNAL, 2021, 23 (02): : 232 - 240
  • [5] A multi-site statistical downscaling model for daily precipitation using global scale GCM precipitation outputs
    Jeong, D. I.
    St-Hilaire, A.
    Ouarda, T. B. M. J.
    Gachon, P.
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (10) : 2431 - 2447
  • [6] Statistical downscaling of precipitation using machine learning techniques
    Sachindra, D. A.
    Ahmed, K.
    Rashid, Md. Mamunur
    Shahid, S.
    Perera, B. J. C.
    ATMOSPHERIC RESEARCH, 2018, 212 : 240 - 258
  • [7] Temporal downscaling of precipitation from climate model projections using machine learning
    Al Kajbaf, Azin
    Bensi, Michelle
    Brubaker, Kaye L.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2022, 36 (08) : 2173 - 2194
  • [8] Temporal downscaling of precipitation from climate model projections using machine learning
    Azin Al Kajbaf
    Michelle Bensi
    Kaye L. Brubaker
    Stochastic Environmental Research and Risk Assessment, 2022, 36 : 2173 - 2194
  • [9] Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs
    Wood, AW
    Leung, LR
    Sridhar, V
    Lettenmaier, DP
    CLIMATIC CHANGE, 2004, 62 (1-3) : 189 - 216
  • [10] Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs
    A. W. Wood
    L. R. Leung
    V. Sridhar
    D. P. Lettenmaier
    Climatic Change, 2004, 62 : 189 - 216