A semiclassical transport model for two-dimensional thin quantum barriers

被引:18
|
作者
Jin, Shi
Novak, Kyle A.
机构
[1] Air Force Inst Technol, Dept Math & Stat, Wright Patterson AFB, OH 45433 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
multiscale method; semiclassical limit; liouville equation; quantum barrier; numerical methods;
D O I
10.1016/j.jcp.2007.06.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a two-dimensional time-dependent semiclassical transport model for mixed-state scattering with thin quantum films. The stationary Schrodinger equation is solved in the quantum barrier to obtain the scattering coefficients used to supply the interface condition that connects two classical domains. The solution in the classical regions is solved using a particle method and interface condition combined with the Hamiltonian-preserving scheme. The overall cost is roughly the same as solving a classical barrier. We construct a numerical method based on this semiclassical approach and validate the model using two numerical examples. Published by Elsevier Inc.
引用
收藏
页码:1623 / 1644
页数:22
相关论文
共 50 条
  • [1] A semiclassical transport model for thin quantum barriers
    Jin, Shi
    Novak, Kyle A.
    MULTISCALE MODELING & SIMULATION, 2006, 5 (04): : 1063 - 1086
  • [2] One- and two-dimensional quantum transport in thin gold wires
    Friedrichowski, S
    Dumpich, G
    PHYSICAL REVIEW B, 1998, 58 (15): : 9689 - 9692
  • [3] Semiclassical and quantum transport in the two-dimensional electron gas in a hard-wall antidot lattice
    D. A. Kozlov
    Z. D. Kvon
    A. E. Plotnikov
    JETP Letters, 2009, 89 : 80 - 83
  • [4] Semiclassical and quantum transport in the two-dimensional electron gas in a hard-wall antidot lattice
    Kozlov, D. A.
    Kvon, Z. D.
    Plotnikov, A. E.
    JETP LETTERS, 2009, 89 (02) : 80 - 83
  • [5] Entropic Barriers for Two-Dimensional Quantum Memories
    Brown, Benjamin J.
    Al-Shimary, Abbas
    Pachos, Jiannis K.
    PHYSICAL REVIEW LETTERS, 2014, 112 (12)
  • [6] Small coherence length limit for a two-dimensional quantum transport model
    Mathématiques pour l'Industrie et la Physique, UMR CNRS 5640, Université Paul Sabatier, 118, route de Narbonne, F-31062 Toulouse Cedex, France
    Asymptotic Anal, 2006, 3-4 (295-329):
  • [7] Small coherence length limit for a two-dimensional quantum transport model
    Negulescu, Claudia
    ASYMPTOTIC ANALYSIS, 2006, 49 (3-4) : 295 - 329
  • [8] Spin transport in the two-dimensional quantum disordered anisotropic Heisenberg model
    Lima, L. S.
    Pires, A. S. T.
    Costa, B. V.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2014, 371 : 89 - 93
  • [9] Geodesic theory of transport barriers in two-dimensional flows
    Haller, George
    Beron-Vera, Francisco J.
    PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (20) : 1680 - 1702
  • [10] Semiclassical transport in two-dimensional Dirac materials with spatially variable tilt
    Hosseinzadeh, Abolfath
    Jafari, S. A.
    ANNALS OF PHYSICS, 2024, 471