Regularization methods for inverse problems in X-ray tomography

被引:17
|
作者
Titarenko, Valeriy [1 ]
Bradley, Robert [1 ]
Martin, Christopher [1 ]
Withers, Philip J. [1 ]
Titarenko, Sofya [2 ]
机构
[1] Univ Manchester, Henry Moseley Xray Imaging Facil, Sch Mat, Manchester M13 9PL, Lancs, England
[2] Moscow MV Lomonosov State Univ, Fac Phys, Dept Math, Moscow 119991, Russia
来源
关键词
ring artefacts; a priori information; regularization; RING ARTIFACTS;
D O I
10.1117/12.860260
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Scintillators, optical systems and CCD cameras used to record projections also blur them. Therefore the recorded projections are smooth functions of spatial variables. This can be used to construct special methods to suppress ring artefacts. Several such algorithms based on ideas of the theory of inverse and ill-posed problems and using various forms of Tikhonov functional are proposed: a fast ring artefact suppression algorithm in a case of homogeneous specimens and its modified versions for anisotropically attenuated samples.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Regularization Methods for the Solution of Inverse Problems in Solar X-ray and Imaging Spectroscopy
    Prato, Marco
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2009, 16 (02) : 109 - 160
  • [2] Regularization Methods for the Solution of Inverse Problems in Solar X-ray and Imaging Spectroscopy
    Marco Prato
    Archives of Computational Methods in Engineering, 2009, 16 : 109 - 160
  • [3] Shearlet-based regularization in statistical inverse learning with an application to x-ray tomography
    Bubba, Tatiana A.
    Ratti, Luca
    INVERSE PROBLEMS, 2022, 38 (05)
  • [4] Comparison of two regularization methods for soft x-ray tomography at Tore Supra
    Jardin, A.
    Mazon, D.
    Bielecki, J.
    PHYSICA SCRIPTA, 2016, 91 (04)
  • [5] X-ray and optical tomography problems
    Kovtanyuk, A. E.
    Mun, V. M.
    Nazarov, V. G.
    Prokhorov, I. V.
    Yarovenko, I. P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 483 - 498
  • [6] Regularization of methods of a standardless x-ray phase analysis
    Yakimov I.S.
    Dubinin P.S.
    Zaloga A.N.
    Piksina O.E.
    Yakimov Ya.I.
    Journal of Structural Chemistry, 2011, 52 (2) : 319 - 325
  • [7] REGULARIZATION OF METHODS OF A STANDARDLESS X-RAY PHASE ANALYSIS
    Yakimov, I. S.
    Dubinin, P. S.
    Zaloga, A. N.
    Piksina, O. E.
    Yakimov, Ya I.
    JOURNAL OF STRUCTURAL CHEMISTRY, 2011, 52 (02) : 319 - 325
  • [8] X-ray computed tomography using curvelet sparse regularization
    Wieczorek, Matthias
    Frikel, Juergen
    Vogel, Jakob
    Eggl, Elena
    Kopp, Felix
    Noel, Peter B.
    Pfeiffer, Franz
    Demaret, Laurent
    Lasser, Tobias
    MEDICAL PHYSICS, 2015, 42 (04) : 1555 - 1565
  • [9] X-ray computed tomography using sparsity based regularization
    Liu, Li
    Lin, Weikai
    Pan, Jing
    Jin, Mingwu
    NEUROCOMPUTING, 2016, 173 : 256 - 269
  • [10] Modern regularization methods for inverse problems
    Benning, Martin
    Burger, Martin
    ACTA NUMERICA, 2018, 27 : 1 - 111