Polyhedral combinatorics of the K-partitioning problem with representative variables

被引:12
|
作者
Ales, Zacharie [1 ,2 ,3 ]
Knippel, Arnaud [1 ]
Pauchet, Alexandre [2 ]
机构
[1] LMI INSA Rouen, EA 3226, St Etienne, France
[2] LITIS INSA Rouen, EA 4051, St Etienne, France
[3] LIA UAPV, EA 4128, Avignon, France
关键词
Combinatorial optimization; Polyhedral approach; Graph partitioning; FORMULATIONS; ALGORITHM; POLYTOPE; FACETS;
D O I
10.1016/j.dam.2016.04.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The K-partitioning problem consists in partitioning the vertices of a weighted graph in K sets in order to minimize a function related to the edge weights. We introduce a linear mixed integer formulation with edge variables and representative variables. We investigate the polyhedral combinatorics of the problem, study several families of facet-defining inequalities and evaluate their efficiency on the linear relaxation. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] The k-partitioning problem
    Babel, L
    Kellerer, H
    Kotov, V
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 1998, 47 (01) : 59 - 82
  • [2] An Efficient Heuristic for the k-Partitioning Problem
    Kalczynski P.
    Goldstein Z.
    Drezner Z.
    Operations Research Forum, 4 (4)
  • [3] Poisson convergence in the restricted k-partitioning problem
    Bovier, Anton
    Kurkova, Irina
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (04) : 505 - 531
  • [4] Exact and Heuristic Solutions to the Connected k-Partitioning Problem
    Healy, Patrick
    Laroche, Pierre
    Marchetti, Franc
    Martin, Sebastien
    Roka, Zsuzsanna
    2020 7TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'20), VOL 1, 2020, : 1127 - 1132
  • [5] The K-partitioning problem: Formulations and branch-and-cut
    Ales, Zacharie
    Knippel, Arnaud
    NETWORKS, 2020, 76 (03) : 323 - 349
  • [6] On k-partitioning of Hamming graphs
    Bezrukov, SL
    Elsässer, R
    Schroeder, UP
    DISCRETE APPLIED MATHEMATICS, 1999, 95 (1-3) : 127 - 140
  • [7] Multiply Balanced k-Partitioning
    Amir, Amihood
    Ficler, Jessica
    Krauthgamer, Robert
    Roditty, Liam
    Shalom, Oren Sar
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 586 - 597
  • [8] K-Partitioning with Imprecise Probabilistic Edges
    Davot, Tom
    Destercke, Sebastien
    Savourey, David
    BUILDING BRIDGES BETWEEN SOFT AND STATISTICAL METHODOLOGIES FOR DATA SCIENCE, 2023, 1433 : 87 - 95
  • [9] On spectral bounds for the k-partitioning of graphs
    Elsässer, R
    Lücking, T
    Monien, B
    THEORY OF COMPUTING SYSTEMS, 2003, 36 (05) : 461 - 478
  • [10] On Spectral Bounds for the k-Partitioning of Graphs
    Robert Elsässer
    Thomas Lücking
    Burkhard Monien
    Theory of Computing Systems, 2003, 36 : 461 - 478