Study of Gate Oxide/Channel Interface Properties of SON MOSFETs by Random Telegraph Signal and Low Frequency Noise

被引:9
|
作者
Trabelsi, M'hamed [1 ]
Militaru, Liviu [2 ]
Sghaier, Nabil [1 ]
Savio, Andrea [2 ]
Monfray, Stephane [3 ]
Souifi, Abdelkader [2 ]
机构
[1] Inst Preparatoire Etud Ingn Nabeul, Nabeul 8000, Tunisia
[2] Inst Natl Sci Appl, F-69621 Villeurbanne, France
[3] STMicroelectronics, F-38926 Grenoble, France
关键词
Individual trap; low frequency noise; random telegraph signal (RTS) noise; silicon on nothing (SON) technology; submicron SON MOS; trapping/detrapping; MODEL;
D O I
10.1109/TNANO.2010.2043112
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The aim of this paper is the investigation of the gate stack properties of submicron MOSFETs integrated in silicon on nothing technology and the identification of traps responsible for the current fluctuations by random telegraph signal (RTS) technique and low frequency technique. We show that the analysis of devices having random discrete fluctuations in the drain current, the analysis of the RTS noise parameters (amplitude, high and low state durations, activation energy, capture cross section) as a function of bias voltage and temperature, allows us to characterize the traps located in the interface (HfO2-SiO2)/Si. The conventional technique consists of statistical treatment of the RTS time-domain data. The study of RTS noise in submicron SON MOS transistors offers the opportunity of studying the trapping/detrapping behavior of a single interface trap. Furthermore, it has convincingly been shown that this discrete switching of the drain current between a high and a low state is the basic feature responsible for l/f(gamma) flicker noise in MOSFETs transistors.
引用
收藏
页码:402 / 408
页数:7
相关论文
共 50 条
  • [1] Study of SiO2/Si interface properties of SON MOSFETs by random telegraph signal and charge pumping measurements
    Ferraton, S.
    Militaru, L.
    Souifi, A.
    Monfray, S.
    Skotnicki, T.
    SOLID-STATE ELECTRONICS, 2008, 52 (01) : 44 - 48
  • [2] Low frequency noise in thin gate oxide MOSFETs
    Kolarova, R
    Skotnicki, T
    Chroboczek, JA
    MICROELECTRONICS RELIABILITY, 2001, 41 (04) : 579 - 585
  • [3] Study of photogenerated traps in nanopixels by random telegraph signal and low frequency noise
    Troudi, M.
    Sghaier, Na.
    Kalboussi, A.
    Souifi, A.
    EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2010, 50 (02): : 203021 - 203025
  • [4] Geometry and bias dependence of low-frequency random telegraph signal and 1/f noise levels in mosfets
    Toita, M
    Vandamme, LKJ
    Sugawa, S
    Teramoto, A
    Ohmi, T
    FLUCTUATION AND NOISE LETTERS, 2005, 5 (04): : L539 - L548
  • [5] Low frequency gate noise modeling of ultrathin Oxide MOSFETs
    Martinez, F.
    Valenza, M.
    NOISE AND FLUCTUATIONS IN CIRCUITS, DEVICES, AND MATERIALS, 2007, 6600
  • [6] CHANNEL-LENGTH DEPENDENCE OF RANDOM TELEGRAPH SIGNAL IN SUBMICRON MOSFETS
    TSAI, MH
    MA, TP
    HOOK, TB
    IEEE ELECTRON DEVICE LETTERS, 1994, 15 (12) : 504 - 506
  • [7] Low-Frequency Noise and Random Telegraph Noise on Near-Ballistic III-V MOSFETs
    Si, Mengwei
    Conrad, Nathan J.
    Shin, Sanghoon
    Gu, Jiangjiang
    Zhang, Jingyun
    Alam, Muhammad Ashraful
    Ye, Peide D.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) : 3508 - 3515
  • [8] Experimental Study of Random Telegraph Noise in Trigate Nanowire MOSFETs
    Ota, Kensuke
    Saitoh, Masumi
    Tanaka, Chika
    Matsushita, Daisuke
    Numata, Toshinori
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (11) : 3799 - 3804
  • [9] Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps
    Kola, Sekhar Reddy
    Li, Miming
    Thoti, Narasimhulu
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (01) : 253 - 262
  • [10] Random telegraph noise in gate-all-around silicon nanowire MOSFETs induced by a single charge trap or random interface traps
    Sekhar Reddy Kola
    Yiming Li
    Narasimhulu Thoti
    Journal of Computational Electronics, 2020, 19 : 253 - 262