Potato crop stress identification in aerial images using deep learning-based object detection

被引:31
|
作者
Butte, Sujata [1 ]
Vakanski, Aleksandar [2 ]
Duellman, Kasia [3 ]
Wang, Haotian [1 ]
Mirkouei, Amin [2 ]
机构
[1] Univ Idaho, Dept Comp Sci, Idaho Falls, ID 83402 USA
[2] Univ Idaho, Dept Nucl Engn & Ind Management, Idaho Falls, ID 83402 USA
[3] Univ Idaho, Coll Agr & Life Sci, Idaho Falls, ID 83402 USA
关键词
PRECISION AGRICULTURE; MULTISPECTRAL IMAGES; CLASSIFICATION; SEGMENTATION; ADOPTION; FUSION;
D O I
10.1002/agj2.20841
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Recent research on the application of remote sensing and deep learning-based analysis in precision agriculture demonstrated a potential for improved crop management and reduced environmental impacts of agricultural production. Despite the promising results, the practical relevance of these technologies for field deployment requires novel algorithms that are customized for analysis of agricultural images and robust to implementation on natural field imagery. The paper presents an approach for analyzing aerial images of a potato (Solanum tuberosum L.) crop using deep neural networks. The main objective is to demonstrate automated spatial recognition of healthy vs. stressed crop at a plant level. Specifically, we examine premature plant senescence resulting in drought stress on 'Russet Burbank' potato plants. We propose a novel deep learning (DL) model for detecting crop stress, named Retina-UNet-Ag. The proposed architecture is a variant of Retina-UNet and includes connections from low-level semantic representation maps to the feature pyramid network. The paper also introduces a dataset of aerial field images acquired with a Parrot Sequoia camera. The dataset includes manually annotated bounding boxes of healthy and stressed plant regions. Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average dice score coefficient (DSC) of 0.74. A comparison to related state-of-the-art DL models for object detection revealed that the presented approach is effective for this task. The proposed method is conducive toward the assessment and recognition of potato crop stress in aerial field images collected under natural conditions.
引用
收藏
页码:3991 / 4002
页数:12
相关论文
共 50 条
  • [1] A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images
    Bouguettaya, Abdelmalek
    Zarzour, Hafed
    Kechida, Ahmed
    Taberkit, Amine Mohammed
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (02): : 1297 - 1317
  • [2] A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images
    Abdelmalek Bouguettaya
    Hafed Zarzour
    Ahmed Kechida
    Amine Mohammed Taberkit
    Cluster Computing, 2023, 26 : 1297 - 1317
  • [3] A survey of small object detection based on deep learning in aerial images
    Hua, Wei
    Chen, Qili
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (06)
  • [4] Deep Learning-based Object Detection for Crop Monitoring in Soybean Fields
    Pratama, Muhammad Taufiq
    Kim, Sangwook
    Ozawa, Seiichi
    Ohkawa, Takenao
    Chona, Yuya
    Tsuji, Hiroyuki
    Murakami, Noriyuki
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [5] A survey of deep learning-based object detection methods in crop counting
    Huang, Yuning
    Qian, Yurong
    Wei, Hongyang
    Lu, Yiguo
    Ling, Bowen
    Qin, Yugang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 215
  • [6] Comprehensive Analysis of Deep Learning-Based Vehicle Detection in Aerial Images
    Sommer, Lars
    Schuchert, Tobias
    Beyerer, Juergen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (09) : 2733 - 2747
  • [7] Deep learning based multi-category object detection in aerial images
    Sommer, Lars W.
    Schuchert, Tobias
    Beyerer, Juergen
    AUTOMATIC TARGET RECOGNITION XXVII, 2017, 10202
  • [8] Crop Disease Diagnosis with Deep Learning-Based Image Captioning and Object Detection
    Lee, Dong In
    Lee, Ji Hwan
    Jang, Seung Ho
    Oh, Se Jong
    Doo, Ill Chul
    APPLIED SCIENCES-BASEL, 2023, 13 (05):
  • [9] DEEP LEARNING-BASED ALGORITHM FOR COMPLEX SMALLTARGET DETECTION IN UAV AERIAL IMAGES
    Li, Shuangyuan
    Lin, Jianglong
    Lv, Yanchang
    Li, Tianyu
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 135 - 152
  • [10] Object detection and recognition using deep learning-based techniques
    Sharma, Preksha
    Gupta, Surbhi
    Vyas, Sonali
    Shabaz, Mohammad
    IET COMMUNICATIONS, 2023, 17 (13) : 1589 - 1599