Le poids des polynomes irreductibles a coefficients dans un corps fini

被引:0
|
作者
Car, Mireille [1 ]
Mauduit, Christian [2 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille, CMI, CNRS,UMR 7373, 39 Rue F Joliot Curie, F-13453 Marseille 13, France
[2] Aix Marseille Univ, Inst Math Marseille CNRS, Inst Univ FRANCE, UMR 7373, 163 Ave Luminy,Case 907, F-13288 Marseille 9, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2022年 / 146卷 / 02期
关键词
Q-ADDITIVE FUNCTIONS; IRREDUCIBLE POLYNOMIALS; PRIME-NUMBERS; SUM; DIGITS;
D O I
10.1007/s11854-022-0199-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This work concerns the weight of irreducible polynomials over a finite field, i.e., the number of non-zero coefficients of these polynomials. We introduce a polynomial analog of the Vinogradov's method developed by Gallagher and Vaughan, which leads to upper bounds for associated exponential sums. This allows us to study the distribution of the weight of irreducible polynomials in arithmetic progressions and to provide an asymptotic estimate (with an error term) for the number of irreducible polynomials of given degree whose weight is close to the expected value.
引用
收藏
页码:441 / 486
页数:46
相关论文
共 50 条