Sparse portfolio selection via the sorted l1-Norm

被引:43
|
作者
Kremer, Philipp J. [1 ,2 ]
Lee, Sangkyun [3 ]
Bogdan, Malgorzata [4 ,5 ]
Paterlini, Sandra [6 ]
机构
[1] Prime Capital AG, Frankfurt, Germany
[2] EBS Univ Wirtschaft & Recht, Wiesbaden, Germany
[3] Hanyang Univ ERICA, Ansan, South Korea
[4] Univ Wroclaw, Warsaw, Poland
[5] Lund Univ, Lund, Sweden
[6] Univ Trento, Trento, Italy
基金
新加坡国家研究基金会;
关键词
Portfolio management; Markowitz model; Sorted l(1)-Norm regularization; Alternating direction method of multipliers; VARIABLE SELECTION; REGRESSION SHRINKAGE; COVARIANCE-MATRIX; SLOPE; REGULARIZATION; PERFORMANCE; CONSTRAINTS; MARKOWITZ;
D O I
10.1016/j.jbankfin.2019.105687
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a financial portfolio optimization framework that allows to automatically select the relevant assets and estimate their weights by relying on a sorted El-Norm penalization, henceforth SLOPE. To solve the optimization problem, we develop a new efficient algorithm, based on the Alternating Direction Method of Multipliers. SLOPE is able to group constituents with similar correlation properties, and with the same underlying risk factor exposures. Depending on the choice of the penalty sequence, our approach can span the entire set of optimal portfolios on the risk-diversification frontier, from minimum variance to the equally weighted. Our empirical analysis shows that SLOPE yields optimal portfolios with good out-of-sample risk and return performance properties, by reducing the overall turnover, through more stable asset weight estimates. Moreover, using the automatic grouping property of SLOPE, new portfolio strategies, such as sparse equally weighted portfolios, can be developed to exploit the data-driven detected similarities across assets. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fast alternating direction algorithms for sparse portfolio model via sorted l1-norm
    Liu, Wenxiu
    Xu, Lijun
    Zhou, Yijia
    Yu, Bo
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11853 - 11872
  • [2] Sparse index clones via the sorted l1-Norm
    Kremer, Philipp J.
    Brzyski, Damian
    Bogdan, Malgorzata
    Paterlini, Sandra
    QUANTITATIVE FINANCE, 2022, 22 (02) : 349 - 366
  • [3] Sparse Blind Source Separation via l1-Norm Optimization
    Georgiou, Tryphon T.
    Tannenbaum, Allen
    PERSPECTIVES IN MATHEMATICAL SYSTEM THEORY, CONTROL, AND SIGNAL PROCESSING, 2010, 398 : 321 - +
  • [4] Bayesian L1-norm sparse learning
    Lin, Yuanqing
    Lee, Daniel D.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5463 - 5466
  • [5] A GREEDY SPARSE APPROXIMATION ALGORITHM BASED ON L1-NORM SELECTION RULES
    Ben Mhenni, Ramzi
    Bourguignon, Sebastien
    Idier, Jerome
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5390 - 5394
  • [6] L1-Norm Sparse Learning and Its Application
    Zhu Xin-feng
    Li Bin
    Wang Jian-dong
    COMPUTER-AIDED DESIGN, MANUFACTURING, MODELING AND SIMULATION, PTS 1-2, 2011, 88-89 : 379 - +
  • [7] BEYOND l1-NORM MINIMIZATION FOR SPARSE SIGNAL RECOVERY
    Mansour, Hassan
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 337 - 340
  • [8] Improve robustness of sparse PCA by L1-norm maximization
    Meng, Deyu
    Zhao, Qian
    Xu, Zongben
    PATTERN RECOGNITION, 2012, 45 (01) : 487 - 497
  • [9] L1-norm plus L2-norm sparse parameter for image recognition
    Feng, Qingxiang
    Zhu, Qi
    Tang, Lin-Lin
    Pan, Jeng-Shyang
    OPTIK, 2015, 126 (23): : 4078 - 4082
  • [10] Airborne gravimetry data sparse reconstruction via L1-norm convex quadratic programming
    Yang Ya-Peng
    Wu Mei-Ping
    Gang, Tang
    APPLIED GEOPHYSICS, 2015, 12 (02) : 147 - 156