Analysis of stability and instability for standing waves of the double power one dimensional nonlinear Schrodinger equation

被引:3
|
作者
Kfoury, Perla [1 ,2 ,3 ]
Le Coz, Stefan [1 ,2 ,3 ]
Tsai, Tai-Peng [4 ]
机构
[1] Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ Toulouse, UMR5219, F-31062 Toulouse, France
[3] UPS IMT, CNRS, F-31062 Toulouse 9, France
[4] Univ British Columbia, Dept Math, Vancouver V6T 1Z2, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
nonlinear Schrodinger equation; double power nonlinearity; standing waves; stability; orbital stability; ORBITAL STABILITY; BOUND-STATES;
D O I
10.5802/crmath.351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the double power one dimensional nonlinear Schrodinger equation, we establish a complete classification of the stability or instability of standing waves with positive frequencies. In particular, we fill out the gaps left open by previous studies. Stability or instability follows from the analysis of the slope criterion of Grillakis, Shatah and Strauss. The main new ingredients in our approach are a reformulation of the slope and the explicit calculation of the slope value in the zero-frequency case. Our theoretical results are complemented with numerical experiments.
引用
收藏
页码:867 / 892
页数:26
相关论文
共 50 条