Dynamic integration of modular neural network's sub-networks

被引:0
|
作者
Wang, P. [1 ]
Fan, Z.
Li, Y.
机构
[1] Wuhan Univ Technol, Sch Autoamt, Wuhan 430074, Hubei, Peoples R China
[2] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[3] Zhejiang Univ, Sch Informat, Hangzhou 320027, Zhejiang, Peoples R China
来源
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS | 2006年 / 13E卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a general definition for modular neural networks, which can encompass a large variety of modular neural networks in the literature. Issues rela ted to integration of modular neural networks are addressed, and rive integration methods are presented based on the principle of 'divide and conquer' and adaptive ensemble. The five methods are categorized according to (1) distance measurement (including absolute distance measurement and relative distance measurement). (2) number of modules to be integrated (i.e. some methods integrate all modules, while others integrate partial modules). (3) integration strategy (e.g. data-driven integration or data and knowledge-d riven integration). Simulation results demonstrate effectiveness of the methods.
引用
收藏
页码:2280 / 2284
页数:5
相关论文
共 50 条
  • [1] Network with Sub-Networks
    Fuengfusin, Ninnart
    Tamukoh, Hakaru
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB2020), 2020, : 191 - 194
  • [2] Convolutional Network with Sub-Networks
    Fuengfusin, Ninnart
    Tamukoh, Hakaru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : P79 - P79
  • [3] Network with Sub-networks: Layer-wise Detachable Neural Network
    Fuengfusin, Ninnart
    Tamukoh, Hakaru
    JOURNAL OF ROBOTICS NETWORKING AND ARTIFICIAL LIFE, 2021, 7 (04): : 240 - 244
  • [4] Convolutional Network with Sub-Networks
    Fuengfusin, Ninnart
    Tamukoh, Hakaru
    PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON ARTIFICIAL LIFE AND ROBOTICS (ICAROB 2021), 2021, : 6 - 9
  • [5] Dynamic recruitment of resting state sub-networks
    O'Neill, George C.
    Bauer, Markus
    Woolrich, Mark W.
    Morris, Peter G.
    Barnes, Gareth R.
    Brookes, Matthew J.
    NEUROIMAGE, 2015, 115 : 85 - 95
  • [6] A dynamic brain network decomposition method discovers effective brain hemodynamic sub-networks for Parkinson's disease
    Lu, Jiewei
    Zhang, Xinyuan
    Shu, Zhilin
    Han, Jianda
    Yu, Ningbo
    JOURNAL OF NEURAL ENGINEERING, 2024, 21 (02)
  • [7] Network-Coding Solutions for Minimal Combination Networks and Their Sub-Networks
    Cai, Han
    Chrisnata, Johan
    Etzion, Tuvi
    Schwartz, Moshe
    Wachter-Zeh, Antonia
    IEEE Transactions on Information Theory, 2020, 66 (11): : 6786 - 6798
  • [8] Low Entropy Sub-Networks Prevent the Integration of Metabolomic and Transcriptomic Data
    Gogolewski, Krzysztof
    Kostecki, Marcin
    Gambin, Anna
    ENTROPY, 2020, 22 (11) : 1 - 21
  • [9] Network-Coding Solutions for Minimal Combination Networks and Their Sub-Networks
    Cai, Han
    Chrisnata, Johan
    Etzion, Tuvi
    Schwartz, Moshe
    Wachter-Zeh, Antonia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 6786 - 6798
  • [10] Network management convergence of multiple sub-networks in GSM infrastructure
    Zong, BQ
    Jiang, S
    Zhong, T
    Dong, H
    Zhong, SG
    Zhou, WM
    Chen, WS
    APOC 2001: ASIA-PACIFIC OPTICAL AND WIRELESS COMMUNICATIONS: OPTICAL NETWORK DESIGN AND MANAGEMENT, 2001, 4584 : 206 - 214