Intensity-Dependent Exciton Dynamics of (6,5) Single-Walled Carbon Nanotubes: Momentum Selection Rules, Diffusion, and Nonlinear Interactions

被引:28
|
作者
Harrah, D. Mark [1 ,2 ]
Schneck, Jude R. [2 ,3 ]
Green, Alexander A. [5 ]
Hersam, Mark C. [6 ,7 ]
Ziegler, Lawrence D. [2 ,3 ]
Swan, Anna K. [1 ,2 ,4 ]
机构
[1] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[2] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[3] Boston Univ, Dept Chem, Boston, MA 02215 USA
[4] Boston Univ, Dept Phys, Boston, MA 02215 USA
[5] Harvard Univ, Wyss Inst, Cambridge, MA 02138 USA
[6] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[7] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
single-walled carbon nanotubes; pump-probe; diffusion; ENERGY-TRANSFER; FLUORESCENCE;
D O I
10.1021/nn203604v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The exciton dynamics for an ensemble of individual, suspended (6,5), single-walled carbon nanotubes revealed by single color E(22) resonant pump-probe spectroscopy for a wide range of pump fluences are reported. The optically excited initial exciton population ranges from approximately 5 to 120 excitons per similar to 725 nm nanotube. At the higher fluences of this range, the pump probe signals are no longer linearly dependent on the pump Intensity. A single, predictive model is described that fits all data for two decades of pump fluences and three decades of delay times. The model introduces population loss from the optically active zero momentum E(22) state to the rest of the E(22) subband, which Is dark due to momentum selection rules. In the single exciton limit, the E(11) dynamics are well described by a stretched exponential, which is a direct consequence of diffusion quenching from an ensemble of nanotubes of different lengths. The observed change in population relaxation dynamics as a function of increasing pump intensity is attributed to exciton exciton Auger de-excitation in the E(11) subband and, to a lesser extent, in the E(22) subband. From the fit to the model, an average defect density 1/rho = 150 nm and diffusion constants D(11) = 4 cm(2)/s and D(22) = 0.2 cm(2)/s are determined.
引用
收藏
页码:9898 / 9906
页数:9
相关论文
共 50 条
  • [1] Exciton size and mobility in (6,5) single-walled carbon nanotubes
    Lueer, Larry
    Hoseinkhani, Sajjad
    Polli, Dario
    Crochet, Jared
    Hertel, Tobias
    Lanzani, Guglielmo
    ORGANIC OPTOELECTRONICS AND PHOTONICS III, 2008, 6999
  • [2] Enhanced photocurrent in single-walled carbon nanotubes by exciton interactions
    Konabe, Satoru
    Okada, Susumu
    APPLIED PHYSICS LETTERS, 2013, 102 (11)
  • [3] Intersubband exciton relaxation dynamics in single-walled carbon nanotubes
    Manzoni, C
    Gambetta, A
    Menna, E
    Meneghetti, M
    Lanzani, G
    Cerullo, G
    PHYSICAL REVIEW LETTERS, 2005, 94 (20)
  • [4] Ultrafast exciton dynamics in semiconducting single-walled carbon nanotubes
    Ma, YZ
    Valkunas, L
    Dexheimer, SL
    Fleming, GR
    MOLECULAR PHYSICS, 2006, 104 (08) : 1179 - 1189
  • [5] Microenvironment effect on the electronic potentials of individual (6,5) single-walled carbon nanotubes
    Hong, Liu
    Toshimitsu, Fumiyuki
    Niidome, Yasuro
    Nakashima, Naotoshi
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (26) : 5223 - 5228
  • [6] Efficient Separation of (6,5) Single-Walled Carbon Nanotubes Using a "Nanometal Sinker"
    Kato, Yuichi
    Niidome, Yasuro
    Nakashima, Naotoshi
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) : 5435 - 5438
  • [7] Spectroscopic Investigation of Electrochemically Charged Individual (6,5) Single-Walled Carbon Nanotubes
    Schaefer, Sebastian
    Cogan, Nicole M. B.
    Krauss, Todd D.
    NANO LETTERS, 2014, 14 (06) : 3138 - 3144
  • [8] Doping-Dependent Energy Transfer from Conjugated Polyelectrolytes to (6,5) Single-Walled Carbon Nanotubes
    Leinen, Merve Balci
    Berger, Felix J.
    Klein, Patrick
    Muehlinghaus, Markus
    Zorn, Nicolas F.
    Settele, Simon
    Allard, Sybille
    Scherf, Ullrich
    Zaumseil, Jana
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 22680 - 22689
  • [9] Exciton Diffusion in Air-Suspended Single-Walled Carbon Nanotubes
    Moritsubo, S.
    Murai, T.
    Shimada, T.
    Murakami, Y.
    Chiashi, S.
    Maruyama, S.
    Kato, Y. K.
    PHYSICAL REVIEW LETTERS, 2010, 104 (24)
  • [10] Influence of Exciton Dimensionality on Spectral Diffusion of Single-Walled Carbon Nanotubes
    Ma, Xuedan
    Roslyak, Oleksiy
    Wang, Feng
    Duque, Juan G.
    Piryatinski, Andrei
    Doorn, Stephen K.
    Htoon, Han
    ACS NANO, 2014, 8 (10) : 10613 - 10620