High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model

被引:9
|
作者
Graham, J. Pietarila [1 ,2 ]
Mininni, P. D. [3 ,4 ,5 ]
Pouquet, A. [3 ]
机构
[1] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[2] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[3] Natl Ctr Atmospher Res, Computat & Informat Syst Lab, Boulder, CO 80307 USA
[4] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[5] Consejo Nacl Invest Cient & Tecn, IFIBA, RA-1428 Buenos Aires, DF, Argentina
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 01期
基金
美国国家科学基金会;
关键词
SCALE INTERACTIONS; MAGNETIC-FIELDS; MHD TURBULENCE; ENERGY-SPECTRA; SIMULATIONS; FLUCTUATIONS; CASCADES;
D O I
10.1103/PhysRevE.84.016314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfven time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Lagrangian particle tracking in high Reynolds number turbulence
    Chang, Kelken
    Ouellette, Nicholas T.
    Xu, Haitao
    Bodenschatz, Eberhard
    PARTICLE-LADEN FLOW: FROM GEOPHYSICAL TO KOLMOGOROV SCALES, 2007, 11 : 299 - +
  • [2] On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number
    Favier, B. F. N.
    Godeferd, F. S.
    Cambon, C.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2012, 106 (01): : 89 - 111
  • [3] Quasi-static magnetohydrodynamic turbulence at high Reynolds number
    Favier, B.
    Godeferd, F. S.
    Cambon, C.
    Delache, A.
    Bos, W. J. T.
    JOURNAL OF FLUID MECHANICS, 2011, 681 : 434 - 461
  • [4] Quasi-static magnetohydrodynamic turbulence at high Reynolds number
    Delache, A.
    Favier, B.
    Godeferd, F. S.
    Cambon, C.
    Bos, W. J. T.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): GEOPHYSICAL AND MAGNETOHYDRODYNAMIC TURBULENCE, 2011, 318
  • [5] Reynolds number dependence of Lagrangian dispersion in direct numerical simulations of anisotropic magnetohydrodynamic turbulence
    Pratt, J.
    Busse, A.
    Mueller, W-C
    JOURNAL OF FLUID MECHANICS, 2022, 944
  • [6] Magnetohydrodynamic turbulence at low magnetic Reynolds number
    Knaepen, Bernard
    Moreau, Rene
    ANNUAL REVIEW OF FLUID MECHANICS, 2008, 40 : 25 - 45
  • [7] Magnetohydrodynamic turbulence at moderate magnetic Reynolds number
    Knaepen, B
    Kassinos, S
    Carati, D
    JOURNAL OF FLUID MECHANICS, 2004, 513 : 199 - 220
  • [8] Shear effect on lagrangian acceleration in high-Reynolds number turbulence
    Tsuji, Yoshiyuki
    ADVANCES IN TURBULENCE XI, 2007, 117 : 427 - 428
  • [9] Magnetic Reynolds number effects in compressible magnetohydrodynamic turbulence
    Ladeinde, F
    Gaitonde, DV
    PHYSICS OF FLUIDS, 2004, 16 (06) : 2097 - 2121
  • [10] Decay of magnetohydrodynamic turbulence at low magnetic Reynolds number
    Burattini, P.
    Zikanov, O.
    Knaepen, B.
    JOURNAL OF FLUID MECHANICS, 2010, 657 : 502 - 538