THE CHEBOTAREV INVARIANT OF A FINITE GROUP: A CONJECTURE OF KOWALSKI AND ZYWINA

被引:8
|
作者
Lucchini, Andrea [1 ]
机构
[1] Univ Padua, Dipartmento Matemat, Via Trieste 63, I-35121 Padua, Italy
关键词
1ST COHOMOLOGY GROUP; CHEVALLEY-GROUPS; PROJECTIVE-REPRESENTATIONS; MINIMAL DEGREES; GENERATION; DERANGEMENTS; ORDERS;
D O I
10.1090/proc/13805
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A subset {g(1), . . . ,g(d)} of a finite group G invariably generates G if {g(1)(1)(x), . . .,g(d)(xd)} generates G for every choice of x(i )is an element of G. The Chebotarev invariant C(G) of G is the expected value of the random variable n that is minimal subject to the requirement that n randomly chosen elements of G invariably generate G. Confirming a conjecture of Kowalski and Zywina, we prove that there exists an absolute constant beta such that C(G) <= beta root vertical bar G vertical bar for all finite groups G.
引用
收藏
页码:4549 / 4562
页数:14
相关论文
共 50 条