Fast Kalman Filtering and Forward-Backward Smoothing via a Low-Rank Perturbative Approach (vol 23, pg 316, 209)

被引:0
|
作者
Pnevmatikakis, E. A. [1 ]
Rahnama Rad, K. [1 ]
Huggins, J.
Paninski, Liam
机构
[1] City Univ New York, Baruch Coll, Dept Informat Syst & Stat, New York, NY 10017 USA
关键词
D O I
10.1080/10618600.2019.1695454
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1017 / 1017
页数:1
相关论文
共 3 条
  • [1] Fast Kalman Filtering and Forward-Backward Smoothing via a Low-Rank Perturbative Approach
    Pnevmatikakis, Eftychios A.
    Rad, Kamiar Rahnama
    Huggins, Jonathan
    Paninski, Liam
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2014, 23 (02) : 316 - 339
  • [2] Fast Kalman filter using hierarchical matrices and a low-rank perturbative approach
    Saibaba, Arvind K.
    Miller, Eric L.
    Kitanidis, Peter K.
    INVERSE PROBLEMS, 2015, 31 (01)
  • [3] Computation of low-rank tensor approximation under existence constraint via a forward-backward algorithm
    Nazih, Marouane
    Minaoui, Khalid
    Sobhani, Elaheh
    Comon, Pierre
    SIGNAL PROCESSING, 2021, 188