Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures

被引:1306
作者
Bobb, Jennifer F. [1 ]
Valeri, Linda [1 ]
Claus Henn, Birgit [2 ]
Christiani, David C. [3 ]
Wright, Robert O. [4 ]
Mazumdar, Maitreyi [3 ]
Godleski, John J. [2 ]
Coull, Brent A. [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Landmark Ctr, Boston, MA 02215 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[4] Mt Sinai Hosp, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
Air pollution; Bayesian variable selection; Environmental health; Gaussian process regression; Metal mixtures; VARIABLE SELECTION; MEASUREMENT ERROR; COMPLEX-MIXTURES; MODELS;
D O I
10.1093/biostatistics/kxu058
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Because humans are invariably exposed to complex chemical mixtures, estimating the health effects of multi-pollutant exposures is of critical concern in environmental epidemiology, and to regulatory agencies such as the U.S. Environmental Protection Agency. However, most health effects studies focus on single agents or consider simple two-way interaction models, in part because we lack the statistical methodology to more realistically capture the complexity of mixed exposures. We introduce Bayesian kernel machine regression (BKMR) as a new approach to study mixtures, in which the health outcome is regressed on a flexible function of the mixture (e.g. air pollution or toxic waste) components that is specified using a kernel function. In high-dimensional settings, a novel hierarchical variable selection approach is incorporated to identify important mixture components and account for the correlated structure of the mixture. Simulation studies demonstrate the success of BKMR in estimating the exposure-response function and in identifying the individual components of the mixture responsible for health effects. We demonstrate the features of the method through epidemiology and toxicology applications.
引用
收藏
页码:493 / 508
页数:16
相关论文
共 24 条
[1]  
Bailey N., 2005, BAYLEY SCALES INFANT, V3rd
[2]   Mechanisms of Inhaled Fine Particulate Air Pollution-induced Arterial Blood Pressure Changes [J].
Bartoli, Carlo R. ;
Wellenius, Gregory A. ;
Diaz, Edgar A. ;
Lawrence, Joy ;
Coull, Brent A. ;
Akiyama, Ichiro ;
Lee, Lani M. ;
Okabe, Kazunori ;
Verrier, Richard L. ;
Godleski, John J. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2009, 117 (03) :361-366
[3]   Estimating the Health Effects of Exposure to Multi-Pollutant Mixture [J].
Billionnet, Cecile ;
Sherrill, Duane ;
Annesi-Maesano, Isabella .
ANNALS OF EPIDEMIOLOGY, 2012, 22 (02) :126-141
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Unraveling the Health Effects of Environmental Mixtures: An NIEHS Priority [J].
Carlin, Danielle J. ;
Rider, Cynthia V. ;
Woychik, Rick ;
Birnbaum, Linda S. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2013, 121 (01) :A6-A8
[6]  
Cristianini N, 2000, An introduction to support vector machines and other kernel-based learning methods
[7]   Identifying Subsets of Complex Mixtures Most Associated With Complex Diseases Polychlorinated Biphenyls and Endometriosis as a Case Study [J].
Gennings, Chris ;
Sabo, Roy ;
Carney, Ed .
EPIDEMIOLOGY, 2010, 21 :S77-S84
[8]   VARIABLE SELECTION VIA GIBBS SAMPLING [J].
GEORGE, EI ;
MCCULLOCH, RE .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :881-889
[9]   Measurement error caused by spatial misalignment in environmental epidemiology [J].
Gryparis, Alexandros ;
Paciorek, Christopher J. ;
Zeka, Ariana ;
Schwartz, Joel ;
Coull, Brent A. .
BIOSTATISTICS, 2009, 10 (02) :258-274
[10]   Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment [J].
Henn, Birgit Claus ;
Schnaas, Lourdes ;
Ettinger, Adrienne S. ;
Schwartz, Joel ;
Lamadrid-Figueroa, Hector ;
Hernandez-Avila, Mauricio ;
Amarasiriwardena, Chitra ;
Hu, Howard ;
Bellinger, David C. ;
Wright, Robert O. ;
Maria Tellez-Rojo, Martha .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2012, 120 (01) :126-131