Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms

被引:0
|
作者
Koutsonas, Athanassios [1 ]
Thilikos, Dimitrios M. [1 ]
机构
[1] Univ Athens, Athens 15784, Greece
关键词
Branchwidth; Parameterized algorithms; Feedback vertex set; Face cover; BRANCH DECOMPOSITIONS; PARAMETERIZED ALGORITHMS; LINEAR KERNEL; GRAPHS; RATCATCHER; MINORS;
D O I
10.1007/s00453-010-9390-4
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Planar Feedback Vertex Set problem asks whether an n-vertex planar graph contains at most k vertices meeting all its cycles. The Face Cover problem asks whether all vertices of a plane graph G lie on the boundary of at most k faces of G. Standard techniques from parameterized algorithm design indicate that both problems can be solved by sub-exponential parameterized algorithms (where k is the parameter). In this paper we improve the algorithmic analysis of both problems by proving a series of combinatorial results relating the branchwidth of planar graphs with their face cover. Combining this fact with duality properties of branchwidth, allows us to derive analogous results on feedback vertex set. As a consequence, it follows that Planar Feedback Vertex Set and Face Cover can be solved in O(2(15.11).root(k) + n(2)) and O(2(10.1).root(k) + n(2)) steps, respectively.
引用
收藏
页码:987 / 1003
页数:17
相关论文
共 50 条
  • [1] Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms
    Koutsonas, Athanassios
    Thilikos, Dimitrios M.
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 264 - 274
  • [2] Planar Feedback Vertex Set and Face Cover: Combinatorial Bounds and Subexponential Algorithms
    Athanassios Koutsonas
    Dimitrios M. Thilikos
    Algorithmica, 2011, 60 : 987 - 1003
  • [3] New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs
    Kloks, T
    Lee, CM
    Liu, JP
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2002, 2573 : 282 - 295
  • [4] FEEDBACK VERTEX SET ON PLANAR GRAPHS
    Chen, Hong-Bin
    Fu, Hung-Lin
    Shih, Chie-Huai
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (06): : 2077 - 2082
  • [5] Parameterized algorithms for feedback vertex set
    Kanj, I
    Pelsmajer, M
    Schaefer, M
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2004, 3162 : 235 - 247
  • [6] Feedback vertex set reconfiguration in planar graphs
    Bousquet, Nicolas
    Hommelsheim, Felix
    Kobayashi, Yusuke
    Muehlenthaler, Moritz
    Suzuki, Akira
    THEORETICAL COMPUTER SCIENCE, 2023, 979
  • [7] A linear kernel for planar feedback vertex set
    Bodlaender, Hans L.
    Penninkx, Eelko
    PARAMETERIZED AND EXACT COMPUTATION, PROCEEDINGS, 2008, 5018 : 160 - 171
  • [8] On the feedback vertex set problem for a planar graph
    Praktische Mathematik, Chrstn.-Albrechts-Univ. zu Kiel, D-24098 Kiel, Germany
    Comput Vienna New York, 2 (129-155):
  • [9] On the feedback vertex set problem for a planar graph
    Hackbusch, W
    COMPUTING, 1997, 58 (02) : 129 - 155
  • [10] Connected Feedback Vertex Set, in Planar Graphs
    Grigoriev, Alexander
    Sitters, Rene
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2010, 5911 : 143 - +