Towards Trust-Augmented Visual Analytics for Data-Driven Energy Modeling

被引:0
|
作者
Kandakatla, Akshith Reddy [1 ]
Chandan, Vikas [2 ]
Kundu, Soumya [2 ]
Chakraborty, Indrasis [3 ]
Cook, Kristin [2 ]
Dasgupta, Aritra [1 ]
机构
[1] New Jersey Inst Technol, Newark, NJ 07102 USA
[2] Pacific Northwest Natl Lab, Richland, WA 99352 USA
[3] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
VISUALIZATION;
D O I
10.1109/TREX51495.2020.00007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The promise of data-driven predictive modeling is being increasingly realized in various science and engineering disciplines, where experts are used to the more conventional, simulation-driven modeling practices. However, trust remains a bottleneck for greater adoption of machine learning-based models for domain experts, who might not be necessarily trained in data science. In this paper, we focus on the building energy domain, where physics-based simulations are being complemented or replaced by machine learning-based methods for forecasting energy supply and demand at various spatio-temporal scales. We study the trust problem in close collaboration with energy scientists and engineers and describe how visual analytics can be leveraged for alleviating this trust bottleneck for stakeholders with varying degrees of expertise and analytical goals in this domain.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 50 条
  • [1] A Data-Driven Platform for the Coordination of Independent Visual Analytics Tools
    Nonnemann, Lars
    Hogräfer, Marius
    Röhlig, Martin
    Schumann, Heidrun
    Urban, Bodo
    Schulz, Hans-Jörg
    Computers and Graphics (Pergamon), 2022, 106 : 152 - 160
  • [2] InsideInsights: Integrating Data-Driven Reporting in Collaborative Visual Analytics
    Mathisen, A.
    Horak, T.
    Klokmose, C. N.
    Grdnbaek, K.
    Elmqvist, N.
    COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 649 - 661
  • [3] Paradigm change towards Visual Analytics for data-driven quality improvement in highly flexible production systems
    Schmihing, Frederik
    Schindler, Matthias
    Jochem, Roland
    2020 25TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2020, : 573 - 580
  • [4] DATA-DRIVEN MODELING OF ENGAGEMENT ANALYTICS FOR QUALITY BLENDED LEARNING
    Yang, Nan
    Ghislandi, Patrizia
    Raffaghelli, Juliana
    Ritella, Giuseppe
    JOURNAL OF E-LEARNING AND KNOWLEDGE SOCIETY, 2019, 15 (03): : 211 - 225
  • [5] Visual Analytics for Data-Driven Understanding of the Substance Use Disorder Epidemic
    Qaurooni, Danial
    Herr, Bruce W.
    Zappone, Sarah Renee
    Wojciechowska, Klaudia
    Boerner, Katy
    Schleyer, Titus
    INQUIRY-THE JOURNAL OF HEALTH CARE ORGANIZATION PROVISION AND FINANCING, 2024, 61
  • [6] SEEDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics
    Vartak, Manasi
    Rahman, Sajjadur
    Madden, Samuel
    Parameswaran, Aditya
    Polyzotis, Neoklis
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (13): : 2182 - 2193
  • [7] Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality
    Jiang, Xiaoyu
    Kong, Xiangyin
    Ge, Zhiqiang
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (06) : 1445 - 1461
  • [8] Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality
    Xiaoyu Jiang
    Xiangyin Kong
    Zhiqiang Ge
    IEEE/CAA Journal of Automatica Sinica, 2023, 10 (06) : 1445 - 1461
  • [9] Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability
    Le, Thanh Tuan
    Priya, Jayabal Chandra
    Le, Huu Cuong
    Le, Nguyen Viet Linh
    Duong, Minh Thai
    Cao, Dao Nam
    International Journal of Renewable Energy Development, 2024, 13 (02) : 270 - 293
  • [10] Harnessing artificial intelligence for data-driven energy predictive analytics: A systematic survey towards enhancing sustainability
    Le, Thanh Tuan
    Priya, Jayabal Chandra
    Le, Huu Cuong
    Le, Nguyen Viet Linh
    Duong, Minh Thai
    Cao, Dao Nam
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2024, 13 (02): : 270 - 293