Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions

被引:35
|
作者
Wang, Qian [1 ]
Tu, Shiqi [1 ]
Wang, Weiyi [2 ]
Chen, Wei [1 ]
Duan, Xiaoyue [1 ,2 ]
Chang, Limin [2 ]
机构
[1] Jilin Normal Univ, Educ Dept Jilin Prov, Key Lab Environm Mat & Pollut Control, Siping 136000, Peoples R China
[2] Jilin Normal Univ, Key Lab Preparat & Applicat Environm Friendly Mat, Minist Educ, Siping 136000, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrochemical oxidation; Lead dioxide anode; Indium; Cefalexin; HIGHLY EFFICIENT; PBO2; ELECTRODES; OXIDATION; LEAD; NANOPARTICLES; PLATTNERITE; FABRICATION; CEPHALEXIN; MECHANISM; KINETICS;
D O I
10.1016/j.colsurfa.2021.127244
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, the Indium doped Ti/PbO2 electrode (marked as Ti/In-PbO2) was prepared via simple electrodeposition technology for electrochemical degradation of cefalexin (CLX). To obtain the effect of Indium on the electrochemical activity and stability of Ti/PbO2 electrode and optimize the doping amount of Indium, the morphology, crystal structure, element state, electrochemical activity and stability of Ti/In-PbO2 electrodes with different Indium amounts were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fluorescence spectroscopy, linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA), electrochemical impedance spectroscopy (EIS) and Tafel curve. The results showed that when the InNO3 concentration in electrodeposition solution was 15 mM/L, the Ti/In-PbO2 electrode possessed the best electrocatalytic activity and the highest stability due to its denser structure, finer grains, larger specific surface area, and stronger ability to generate hydroxyl radicals. The electrochemical degradation rate constant of CLX at Ti/In-PbO2 anode was 1.93 times faster than that at pristine Ti/PbO2 electrode. Additionally, the influence of current density, initial pH, initial CLX concentration and electrolyte concentration on removal efficiency of CLX was investigated and the degradation pathway of CLX was proposed.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Electrochemical degradation of phenol in aqueous solution using PbO2 anode
    Duan, Xiaoyue
    Ma, Fang
    Yuan, Zhongxin
    Chang, Limin
    Jin, Xintong
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2013, 44 (01) : 95 - 102
  • [2] Electrochemical degradation of 4-chlorophenol in aqueous solution using modified PbO2 anode
    Duan, X. Y.
    Ma, F.
    Chang, L. M.
    WATER SCIENCE AND TECHNOLOGY, 2012, 66 (11) : 2468 - 2474
  • [3] Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode
    Zhong, Congqiang
    Wei, Kajia
    Han, Weiqing
    Wang, Lianjun
    Sun, Xiuyun
    Li, Jiansheng
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2013, 705 : 68 - 74
  • [4] Electrocatalytic degradation of bisphenol a in aqueous solution using β-PbO2/Ti as anode
    Zhu, Chengzhu
    Hu, Caiju
    Lu, Jun
    Wang, Xiaohui
    Huang, Li
    Chen, Tianhu
    RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2015, 51 (04) : 353 - 361
  • [5] Electrocatalytic degradation of bisphenol a in aqueous solution using β-PbO2/Ti as anode
    Chengzhu Zhu
    Caiju Hu
    Jun Lu
    Xiaohui Wang
    Li Huang
    Tianhu Chen
    Russian Journal of Electrochemistry, 2015, 51 : 353 - 361
  • [6] Electrochemical degradation of Cephalexin on Ti/TiO2/βPbO2 anode modified by sodium dodecyl sulfate
    Hadavand, Nasrin
    Khazalpour, Sadegh
    Fotouhi, Lida
    Nematollahi, Davood
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Electrochemical degradation of safranine T in aqueous solution by Ti/PbO2 electrodes
    Liu, Baichen
    Ren, Bingli
    Xia, Yun
    Yang, Yang
    Yao, Yingwu
    CANADIAN JOURNAL OF CHEMISTRY, 2020, 98 (01) : 7 - 14
  • [8] Electrochemical degradation of the dimethyl phthalate ester on a fluoride-doped Ti/β-PbO2 anode
    Souza, Fernanda L.
    Aquino, Jose M.
    Irikura, Kallyni
    Miwa, Douglas W.
    Rodrigo, Manuel A.
    Motheo, Artur J.
    CHEMOSPHERE, 2014, 109 : 187 - 194
  • [9] Facile preparation of a Ti/α-PbO2/β-PbO2 electrode for the electrochemical degradation of 2-chlorophenol
    Zhang, Qianli
    Guo, Xinyan
    Cao, Xiaodan
    Wang, Dongtian
    Wei, Jie
    CHINESE JOURNAL OF CATALYSIS, 2015, 36 (07) : 975 - 981
  • [10] Fabrication of In2O3 doped PbO2 anode and its application for electrochemical degradation of norfloxacin in aqueous solutions
    Wang, Qian
    Tu, Shiqi
    Wang, Weiyi
    Liu, Liyue
    Duan, Xiaoyue
    Chang, Limin
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (06):