A Riemann-Roch theorem for the noncommutative two torus

被引:5
|
作者
Khalkhali, Masoud [1 ]
Moatadelro, Ali [1 ]
机构
[1] Univ Western Ontario, Dept Math, London, ON N6A 3K7, Canada
关键词
Noncommutative geometry; Riemann-Roch theorem; Curved noncommutative torus; Heat equation; GEOMETRY; 2-TORI;
D O I
10.1016/j.geomphys.2014.06.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the analogue of the Riemann-Roch formula for the noncommutative two torus A(theta) = C(T-theta(2)) equipped with an arbitrary translation invariant complex structure and a Weyl factor represented by a positive element k is an element of C-infinity (T-theta(2)). We consider a topologically trivial line bundle equipped with a general holomorphic structure and the corresponding twisted Dolbeault Laplacians. We define a spectral triple (A(theta), H, D) that encodes the twisted Dolbeault complex of A(theta) and whose index gives the left hand side of the Riemann-Roch formula. Using Connes' pseudodifferential calculus and heat equation techniques, we explicitly compute the b(2) terms of the asymptotic expansion of Tr(e(-tD2)). We find that the curvature term on the right hand side of the Riemann-Roch formula coincides with the scalar curvature of the noncommutative torus recently defined and computed in Connes and Moscovici (2014) and independently computed in Fathizadeh and Khalkhali (2014). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 30
页数:12
相关论文
共 50 条
  • [1] The Riemann-Roch Theorem
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 43 - 44
  • [2] A Riemann-Roch theorem
    Das, Mrinal Kanti
    Mandal, Satya
    JOURNAL OF ALGEBRA, 2006, 301 (01) : 148 - 164
  • [3] On the theorem of Riemann-Roch
    Maxwell, EA
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1937, 33 : 26 - 34
  • [4] The Riemann-Roch Theorem on higher dimensional complex noncommutative tori
    Mathai, Varghese
    Rosenberg, Jonathan
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 147
  • [5] An application of the Riemann-Roch theorem
    ShiKun Wang
    HuiPing Zhang
    Science in China Series A: Mathematics, 2008, 51 : 765 - 772
  • [6] An application of the Riemann-Roch theorem
    Wang ShiKun
    Zhang HuiPing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (04): : 765 - 772
  • [7] RIEMANN-ROCH THEOREM BY DESINGULARIZATION
    ANGENIOL, B
    ELZEIN, F
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1988, 116 (04): : 385 - 400
  • [8] An application of the Riemann-Roch theorem
    WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM
    AMSS
    Chinese Academy of Sciences
    Beijing 100080
    China
    2 School of Information
    Renmin University of China
    Beijing 100872
    Science in China(Series A:Mathematics), 2008, (04) : 765 - 772
  • [9] A Riemann-Roch theorem for hypermaps
    Cangelmi, Leonardo
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (07) : 1444 - 1448