Numerical bifurcation analysis for ODEs

被引:30
|
作者
Govaerts, W [1 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
关键词
equilibrium; continuation; cycle;
D O I
10.1016/S0377-0427(00)00458-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. We further consider the computation of cycles as a boundary value problem, their continuation and bifurcations. Homoclinic orbits can also be computed as (truncated) boundary value problems and numerically continued. On curves of homoclinic orbits further bifurcations can be detected and computed. We discuss the basic numerical methods, the connections between various computational objects, and provide references to the literature and software implementations. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [1] MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs
    Dhooge, A
    Govaerts, W
    Kuznetsov, YA
    ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (02): : 141 - 164
  • [2] BIFURCATION FORMULAS FOR ODES IN RN
    FLOCKERZI, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1981, 5 (03) : 249 - 263
  • [3] ON A VARIATIONAL APPROACH FOR THE ANALYSIS AND NUMERICAL SIMULATION OF ODES
    Amat, Sergio
    Pedregal, Pablo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (04) : 1275 - 1291
  • [4] Numerical Analysis Project in ODEs for Undergraduate Students
    Hafstein, Sigurdur
    COMPUTATIONAL SCIENCE - ICCS 2019, PT V, 2019, 11540 : 421 - 434
  • [5] ASPECTS OF BACKWARD ERROR ANALYSIS OF NUMERICAL ODES
    EIROLA, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1993, 45 (1-2) : 65 - 73
  • [6] Global bifurcation for a class of nonlinear ODEs
    Bettiol, Renato G.
    Piccione, Paolo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 486 - 507
  • [7] Global bifurcation for a class of nonlinear ODEs
    Renato G. Bettiol
    Paolo Piccione
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 486 - 507
  • [8] Numerical analysis of the imperfect bifurcation
    Janovska, D
    Bohmer, K
    Janovsky, V
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S445 - S448
  • [9] CONTINUATION TECHNIQUES AND INTERACTIVE SOFTWARE FOR BIFURCATION-ANALYSIS OF ODES AND ITERATED MAPS
    KHIBNIK, AI
    KUZNETSOV, YA
    LEVITIN, VV
    NIKOLAEV, EV
    PHYSICA D, 1993, 62 (1-4): : 360 - 371
  • [10] Oscillatory bifurcation problems for ODEs with logarithmic nonlinearity
    Shibata, Tetsutaro
    OPEN MATHEMATICS, 2021, 19 (01): : 641 - 657