ON AN EXPLICIT DIFFERENCE METHOD FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS

被引:0
|
作者
Quintana Murillo, Joaquin [1 ]
Bravo Yuste, Santos [1 ]
机构
[1] Univ Extremadura, Dept Fis, E-06071 Badajoz, Spain
关键词
RANDOM-WALK; STABILITY; SCHEME;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An explicit difference scheme for solving fractional diffusion and fractional diffusion-wave equations, in which the fractional derivative is in the Caputo form, is considered. The two equations are studied separately: for the fractional diffusion equation, the L1 discretization formula is employed, whereas the L2 discretization formula is used for the fractional diffusion-wave equation. Its accuracy is similar to other well-known explicit difference schemes, but its region of stability is larger The stability analysis is carried out by means of a procedure similar to the standard von Neumann method. The stability bound, which is given in terms of the the Riemann Zeta function, is checked numerically.
引用
收藏
页码:1031 / 1036
页数:6
相关论文
共 50 条
  • [1] An Explicit Difference Method for Solving Fractional Diffusion and Diffusion-Wave Equations in the Caputo Form
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02):
  • [2] On three explicit difference schemes for fractional diffusion and diffusion-wave equations
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    PHYSICA SCRIPTA, 2009, T136
  • [3] A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations
    J. Quintana-Murillo
    S. B. Yuste
    The European Physical Journal Special Topics, 2013, 222 : 1987 - 1998
  • [4] A finite difference method with non-uniform timesteps for fractional diffusion and diffusion-wave equations
    Quintana-Murillo, J.
    Yuste, S. B.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2013, 222 (08): : 1987 - 1998
  • [5] Meshless analysis of fractional diffusion-wave equations by generalized finite difference method
    Qing, Lanyu
    Li, Xiaolin
    APPLIED MATHEMATICS LETTERS, 2024, 157
  • [6] Rectangular decomposition method for fractional diffusion-wave equations
    Odibat, Zaid M.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 179 (01) : 92 - 97
  • [7] A Galerkin Finite Element Method to Solve Fractional Diffusion and Fractional Diffusion-Wave Equations
    Esen, Alaattin
    Ucar, Yusuf
    Yagmurlu, Nuri
    Tasbozan, Orkun
    MATHEMATICAL MODELLING AND ANALYSIS, 2013, 18 (02) : 260 - 273
  • [8] A B-spline collocation method for solving fractional diffusion and fractional diffusion-wave equations
    Esen, A.
    Tasbozan, O.
    Ucar, Y.
    Yagmurlu, N. M.
    TBILISI MATHEMATICAL JOURNAL, 2015, 8 (02) : 181 - 193
  • [9] Numerical method for fractional diffusion-wave equations with functional delay
    Pimenov, V. G.
    Tashirova, E. E.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2021, 57 : 156 - 169
  • [10] SOLVING FRACTIONAL DIFFUSION AND FRACTIONAL DIFFUSION-WAVE EQUATIONS BY PETROV-GALERKIN FINITE ELEMENT METHOD
    Esen, A.
    Ucar, Y.
    Yagmurlu, M.
    Tasbozan, O.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (02): : 155 - 168