Tensor network methods with graph enhancement

被引:8
|
作者
Huebener, R. [1 ,2 ,3 ]
Kruszynska, C. [3 ]
Hartmann, L. [3 ]
Duer, W. [3 ]
Plenio, M. B. [4 ,5 ]
Eisert, J. [1 ,2 ]
机构
[1] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[2] Univ Potsdam, Inst Phys & Astron, D-14476 Potsdam, Germany
[3] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[4] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[5] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
来源
PHYSICAL REVIEW B | 2011年 / 84卷 / 12期
基金
英国工程与自然科学研究理事会;
关键词
DENSITY-MATRIX RENORMALIZATION; QUANTUM SPIN CHAINS; BETHE LATTICE; COMPUTATION; ENTANGLEMENT; SYSTEMS; STATES; MODEL;
D O I
10.1103/PhysRevB.84.125103
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present applications of the renormalization algorithm with graph enhancement (RAGE). This analysis extends the algorithms and applications given for approaches based on matrix product states introduced in [Phys. Rev. A 79, 022317 (2009)] to other tensor-network states such as the tensor tree states (TTS) and projected entangled pair states. We investigate the suitability of the bare TTS to describe ground states, showing that the description of certain graph states and condensed-matter models improves. We investigate graph-enhanced tensor-network states, demonstrating that in some cases (disturbed graph states and for certain quantum circuits) the combination of weighted graph states with TTS can greatly improve the accuracy of the description of ground states and time-evolved states. We comment on delineating the boundary of the classically efficiently simulatable states of quantum many-body systems.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Fermionic tensor network methods
    Mortier, Quinten
    Devos, Lukas
    Burgelman, Lander
    Vanhecke, Bram
    Bultinck, Nick
    Verstraete, Frank
    Haegeman, Jutho
    Vanderstraeten, Laurens
    SCIPOST PHYSICS, 2025, 18 (01):
  • [2] Tensor network wavefunction methods
    Zhao, Yilin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Tensor Methods for Network Analysis
    Gitelman, Daniel
    ProQuest Dissertations and Theses Global, 2022,
  • [4] ULTRASOUND INTERACTIVE SEGMENTATION WITH TENSOR-GRAPH METHODS
    Rieke, Nicola
    Hennersperger, Christoph
    Mateus, Diana
    Navab, Nassir
    2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014, : 690 - 693
  • [5] Accurate piezoelectric tensor prediction with equivariant attention tensor graph neural network
    Dong, Luqi
    Zhang, Xuanlin
    Yang, Ziduo
    Shen, Lei
    Lu, Yunhao
    NPJ COMPUTATIONAL MATERIALS, 2025, 11 (01)
  • [6] Tensor network methods for invariant theory
    Biamonte, Jacob
    Bergholm, Ville
    Lanzagorta, Marco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (47)
  • [7] Fine Grained Tensor Network Methods
    Schmoll, Philipp
    Jahromi, Saeed S.
    Hoermann, Max
    Schmidt, K. P.
    Orus, Roman
    PHYSICAL REVIEW LETTERS, 2020, 124 (20)
  • [8] Circulant Tensor Graph Convolutional Network for Text Classification
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13188 LNCS : 32 - 46
  • [9] Tensor-view Topological Graph Neural Network
    Wen, Tao
    Chen, Elynn
    Chen, Yuzhou
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [10] Circulant Tensor Graph Convolutional Network for Text Classification
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 32 - 46