Beryllium migration in JET ITER-like wall plasmas

被引:88
|
作者
Brezinsek, S. [2 ,35 ]
Widdowson, A. [3 ]
Mayer, M. [4 ,55 ]
Philipps, V. [2 ,35 ]
Baron-Wiechec, P. [3 ]
Coenen, J. W. [2 ,35 ]
Heinola, K. [5 ,91 ]
Huber, A. [2 ,33 ]
Likonen, J. [5 ,100 ]
Petersson, P. [6 ,37 ]
Rubel, M. [6 ,37 ]
Stamp, M. F. [3 ,9 ]
Borodin, D. [2 ,35 ]
Coad, J. P. [3 ,9 ,100 ]
Carrasco, A. G. [6 ]
Kirschner, A. [2 ,35 ]
Krat, S. [4 ]
Krieger, K. [4 ,55 ]
Lipschultz, B. [3 ,57 ,98 ]
Linsmeier, Ch. [2 ,35 ]
Matthews, G. F. [3 ,9 ]
Schmid, K. [4 ]
Abhangi, M. [40 ]
Abreu, P. [46 ]
Aftanas, M. [43 ]
Afzal, M. [9 ]
Aggarwal, K. M. [26 ]
Aho-Mantila, L. [100 ]
Ahonen, E. [7 ]
Aints, M. [96 ]
Airila, M. [100 ]
Albanese, R. [94 ]
Alegre, D. [52 ]
Alessi, E. [39 ]
Aleynikov, P. [48 ]
Alfier, A. [13 ]
Alkseev, A. [61 ]
Allan, P. [9 ]
Almaviva, S. [85 ]
Alonso, A. [52 ]
Alper, B. [9 ]
Alsworth, I. [9 ]
Alves, D. [46 ]
Ambrosino, G. [94 ]
Ambrosino, R. [95 ]
Amosov, V. [78 ]
Andersson, F. [17 ]
Andersson Sunden, E. [21 ]
Angelone, M. [80 ]
Anghel, A. [75 ]
机构
[1] EUROfus Consortium, JET, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[2] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[3] CCFE Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[4] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[5] VTT, TEKES, Espoo 02044, Finland
[6] Royal Inst Technol KTH, Assoc VR, S-10044 Stockholm, Sweden
[7] Aalto Univ, FIN-00076 Aalto, Finland
[8] BCS, Barcelona, Spain
[9] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[10] IRFM, CEA, F-13108 St Paul Les Durance, France
[11] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[12] Consorzio CREATE, I-80125 Naples, Italy
[13] Consorzio RFX, I-35127 Padua, Italy
[14] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[15] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[16] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[17] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[18] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[19] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[20] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[21] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[22] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[23] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[24] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[25] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[26] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[27] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[28] Dublin City Univ, Dublin, Ireland
[29] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[30] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[31] EUROfus Programme Management Unit, D-85748 Garching, Germany
[32] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[33] European Commiss, B-1049 Brussels, Belgium
[34] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[35] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[36] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[37] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[38] Gen Atom, San Diego, CA 85608 USA
[39] IFP CNR, I-20125 Milan, Italy
[40] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[41] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[42] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[43] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[44] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[45] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[46] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[47] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[48] ITER Org, F-13067 St Paul Les Durance, France
[49] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka, Ibaraki 3110913, Japan
[50] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
关键词
JET tokamak; beryllium; material migration; erosion; deposition; ITER; INNER WALL; EROSION; ILW;
D O I
10.1088/0029-5515/55/6/063021
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
JET is used as a test bed for ITER, to investigate beryllium migration which connects the lifetime of first-wall components under erosion with tokamak safety, in relation to long-term fuel retention. The (i) limiter and the (ii) divertor configurations have been studied in JET-ILW (JET with a Be first wall and W divertor), and compared with those for the former JET-C (JET with carbon-based plasma-facing components (PFCs)). (i) For the limiter configuration, the Be gross erosion at the contact point was determined in situ by spectroscopy as between 4% (E-in = 35 eV) and more than 100%, caused by Be self-sputtering (E-in = 200 eV). Chemically assisted physical sputtering via BeD release has been identified to contribute to the effective Be sputtering yield, i.e. at E-in = 75 eV, erosion was enhanced by about 1/3 with respect to the bare physical sputtering case. An effective gross yield of 10% is on average representative for limiter plasma conditions, whereas a factor of 2 difference between the gross erosion and net erosion, determined by post-mortem analysis, was found. The primary impurity source in the limiter configuration in JET-ILW is only 25% higher (in weight) than that for the JET-C case. The main fraction of eroded Be stays within the main chamber. (ii) For the divertor configuration, neutral Be and BeD from physically and chemically assisted physical sputtering by charge exchange neutrals and residual ion flux at the recessed wall enter the plasma, ionize and are transported by scrape-off layer flows towards the inner divertor where significant net deposition takes place. The amount of Be eroded at the first wall (21 g) and the Be amount deposited in the inner divertor (28 g) are in fair agreement, though the balancing is as yet incomplete due to the limited analysis of PFCs. The primary impurity source in the JET-ILW is a factor of 5.3 less in comparison with that for JET-C, resulting in lower divertor material deposition, by more than one order of magnitude. Within the divertor, Be performs far fewer re-erosion and transport steps than C due to an energetic threshold for Be sputtering, and inhibits as a result of this the transport to the divertor floor and the pump duct entrance. The target plates in the JET-ILW inner divertor represent at the strike line a permanent net erosion zone, in contrast to the net deposition zone in JET-C with thick carbon deposits on the CFC (carbon-fibre composite) plates. The Be migration identified is consistent with the observed low long-term fuel retention and dust production with the JET-ILW.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Manufacturing of Beryllium Tiles for the JET ITER-Like Wall Project
    Acreman, Martyn
    Gossett, David
    Dorn, Christopher
    Hattan, Lawrence
    2009 23RD IEEE/NPSS SYMPOSIUM ON FUSION ENGINEERING, 2009, : 301 - +
  • [2] Improved confinement in JET high β plasmas with an ITER-like wall
    Challis, C. D.
    Garcia, J.
    Beurskens, M.
    Buratti, P.
    Delabie, E.
    Drewelow, P.
    Frassinetti, L.
    Giroud, C.
    Hawkes, N.
    Hobirk, J.
    Joffrin, E.
    Keeling, D.
    King, D. B.
    Maggi, C. F.
    Mailloux, J.
    Marchetto, C.
    McDonald, D.
    Nunes, I.
    Pucella, G.
    Saarelma, S.
    Simpson, J.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    NUCLEAR FUSION, 2015, 55 (05)
  • [3] An ITER-like wall for JET
    Pamela, J.
    Matthews, G. F.
    Philipps, V.
    Kamendje, R.
    JOURNAL OF NUCLEAR MATERIALS, 2007, 363 (1-3) : 1 - 11
  • [4] Analysis and design of the beryllium tiles for the JET ITER-like wall project
    Thompson, V.
    Krivchenkov, Y.
    Riccardo, V.
    Vizvary, Z.
    FUSION ENGINEERING AND DESIGN, 2007, 82 (15-24) : 1706 - 1712
  • [5] The effect of beryllium oxide on retention in JET ITER-like wall tiles
    Makepeace, C.
    Pardanaud, C.
    Roubin, P.
    Borodkina, I
    Ayres, C.
    Coad, P.
    Baron-Wiechec, A.
    Jepu, I
    Heinola, K.
    Widdowson, A.
    Lozano-Perez, S.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    NUCLEAR MATERIALS AND ENERGY, 2019, 19 : 346 - 351
  • [6] Power deposition modelling of the ITER-like wall beryllium tiles at JET
    Firdaouss, M.
    Mitteau, R.
    Villedieu, E.
    Riccardo, V.
    Lomas, P.
    Vizvary, Z.
    Portafaix, C.
    Ferrand, L.
    Thomas, P.
    Nunes, I.
    de Vries, P.
    Chappuis, P.
    Stephan, Y.
    JOURNAL OF NUCLEAR MATERIALS, 2009, 390-91 : 947 - 950
  • [7] Tungsten and beryllium armour development for the JET ITER-like wall project
    Maier, H.
    Hirai, T.
    Rubel, M.
    Neu, R.
    Mertens, Ph.
    Greuner, H.
    Hopf, Ch.
    Matthews, G. F.
    Neubauer, O.
    Piazza, G.
    Gauthier, E.
    Likonen, J.
    Mitteau, R.
    Maddaluno, G.
    Riccardi, B.
    Philipps, V.
    Ruset, C.
    Lungu, C. P.
    Uytdenhouwen, I.
    NUCLEAR FUSION, 2007, 47 (03) : 222 - 227
  • [8] Preliminary Monte Carlo simulation of beryllium migration during JET ITER-like wall divertor operation
    Airila, M. I.
    Jarvinen, A.
    Groth, M.
    Belo, P.
    Wiesen, S.
    Brezinsek, S.
    Lawson, K.
    Borodin, D.
    Kirschner, A.
    Coad, J. P.
    Heinola, K.
    Likonen, J.
    Rubel, M.
    Widdowson, A.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 800 - 804
  • [9] Wall conditioning of JET with the ITER-Like Wall
    Douai, D.
    Brezinsek, S.
    Esser, H. G.
    Joffrin, E.
    Keenan, T.
    Knipe, S.
    Kogut, D.
    Lomas, P. J.
    Marsen, S.
    Nunes, I.
    Philipps, V.
    Pitts, R. A.
    Shimada, M.
    de Vries, P.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S1172 - S1176
  • [10] Operation of JET with an ITER-like Wall
    Horton, Lorne
    FUSION ENGINEERING AND DESIGN, 2015, 96-97 : 28 - 33