Observation of atomic speckle and Hanbury Brown-Twiss correlations in guided matter waves

被引:24
|
作者
Dall, R. G. [1 ]
Hodgman, S. S. [1 ]
Manning, A. G. [1 ]
Johnsson, M. T. [1 ]
Baldwin, K. G. H. [1 ]
Truscott, A. G. [1 ]
机构
[1] Australian Natl Univ, Res Sch Phys & Engn, ARC Ctr Excellence Quantum Atom Opt, Canberra, ACT 0200, Australia
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
基金
澳大利亚研究理事会;
关键词
METASTABLE HELIUM; OPTICAL-FIBERS; NEUTRAL ATOMS; COHERENCE; LIGHT; LASER; TRAP; WIRE;
D O I
10.1038/ncomms1292
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Speckle patterns produced by multiple independent light sources are a manifestation of the coherence of the light field. Second-order correlations exhibited in phenomena such as photon bunching, termed the Hanbury Brown-Twiss effect, are a measure of quantum coherence. Here we observe for the first time atomic speckle produced by atoms transmitted through an optical waveguide, and link this to second-order correlations of the atomic arrival times. We show that multimode matter-wave guiding, which is directly analogous to multimode light guiding in optical fibres, produces a speckled transverse intensity pattern and atom bunching, whereas single-mode guiding of atoms that are output-coupled from a Bose-Einstein condensate yields a smooth intensity profile and a second-order correlation value of unity. Both first-and second-order coherence are important for applications requiring a fully coherent atomic source, such as squeezed-atom interferometry.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Observation of atomic speckle and Hanbury Brown–Twiss correlations in guided matter waves
    R.G. Dall
    S.S. Hodgman
    A.G. Manning
    M.T. Johnsson
    K.G.H. Baldwin
    A.G. Truscott
    Nature Communications, 2
  • [2] Observation of antinormally ordered Hanbury Brown-Twiss correlations
    Usami, K
    Nambu, Y
    Shi, BS
    Tomita, A
    Nakamura, K
    PHYSICAL REVIEW LETTERS, 2004, 92 (11) : 113601 - 1
  • [3] Hanbury Brown-Twiss effect with electromagnetic waves
    Hassinen, T.
    Tervo, J.
    Setala, T.
    Friberg, A. T.
    OPTICS EXPRESS, 2011, 19 (16): : 15188 - 15195
  • [4] Hanbury Brown-Twiss Correlations for a Driven Superatom
    Lampen, J.
    Duspayev, A.
    Nguyen, H.
    Tamura, H.
    Berman, P. R.
    Kuzmich, A.
    PHYSICAL REVIEW LETTERS, 2019, 123 (20)
  • [5] Observation of the Hanbury Brown-Twiss effect with ultracold molecules
    Rosenberg, Jason S.
    Christakis, Lysander
    Guardado-Sanchez, Elmer
    Yan, Zoe Z.
    Bakr, Waseem S.
    NATURE PHYSICS, 2022, 18 (09) : 1062 - +
  • [6] Observation of Hanbury Brown-Twiss anticorrelations for free electrons
    Kiesel, H
    Renz, A
    Hasselbach, F
    NATURE, 2002, 418 (6896) : 392 - 394
  • [7] Observation of Transverse Bose-Einstein Condensation via Hanbury Brown-Twiss Correlations
    RuGway, Wu
    Manning, A. G.
    Hodgman, S. S.
    Dall, R. G.
    Truscott, A. G.
    Lamberton, T.
    Kheruntsyan, K. V.
    PHYSICAL REVIEW LETTERS, 2013, 111 (09)
  • [8] Hanbury Brown-Twiss type correlations with surface plasmon light
    Varro, Sandor
    Kroo, Norbert
    Oszetzky, Daniel
    Nagy, Attila
    Czitrovszky, Aladar
    JOURNAL OF MODERN OPTICS, 2011, 58 (21) : 2049 - 2057
  • [9] The colored Hanbury Brown-Twiss effect
    Silva, B.
    Munoz, C. Sanchez
    Ballarini, D.
    Gonzalez-Tudela, A.
    de Giorgi, M.
    Gigli, G.
    West, K.
    Pfeiffer, L.
    del Valle, E.
    Sanvitto, D.
    Laussy, F. P.
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Hanbury Brown-Twiss Interference of Anyons
    Campagnano, Gabriele
    Zilberberg, Oded
    Gornyi, Igor V.
    Feldman, Dmitri E.
    Potter, Andrew C.
    Gefen, Yuval
    PHYSICAL REVIEW LETTERS, 2012, 109 (10)