Extreme-value statistics of work done in stretching a polymer in a gradient flow

被引:4
|
作者
Vucelja, M. [1 ]
Turitsyn, K. S. [2 ]
Chertkov, M. [3 ,4 ,5 ]
机构
[1] Rockefeller Univ, Ctr Studies Phys & Biol, New York, NY 10065 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Los Alamos Natl Lab, Div Theory, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[5] New Mexico Consortium, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 02期
关键词
FREE-ENERGY DIFFERENCES; FLUCTUATION THEOREM; DYNAMICAL ENSEMBLES; STOCHASTIC DYNAMICS; STATES;
D O I
10.1103/PhysRevE.91.022123
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the statistics of work generated by a gradient flow to stretch a nonlinear polymer. We obtain the large deviation function (LDF) of thework in the full range of appropriate parameters by combining analytical and numerical tools. The LDF shows two distinct asymptotes: "near tails"are linear in work and dominated by coiled polymer configurations, while "far tails"are quadratic in work and correspond to preferentially fully stretched polymers. We find the extreme value statistics of work for several singular elastic potentials, as well as the mean and the dispersion of work near the coil-stretch transition. The dispersion shows a maximum at the transition.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Gini characterization of extreme-value statistics
    Eliazar, Iddo I.
    Sokolov, Igor M.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (21) : 4462 - 4472
  • [2] Universality classes for extreme-value statistics
    Bouchaud, JP
    Mezard, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23): : 7997 - 8015
  • [3] Galaxy distribution and extreme-value statistics
    Antal, T.
    Labini, F. Sylos
    Vasilyev, N. L.
    Baryshev, Y. V.
    EPL, 2009, 88 (05)
  • [4] APPLICATION OF EXTREME-VALUE STATISTICS TO CORROSION
    SHIBATA, T
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1994, 99 (04) : 327 - 336
  • [5] Extreme-value statistics in nonlinear optics
    Zheltikov, Aleksei M.
    OPTICS LETTERS, 2024, 49 (10) : 2665 - 2668
  • [6] Universal fluctuations and extreme-value statistics
    Dahlstedt, K
    Jensen, HJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (50): : 11193 - 11200
  • [7] Extreme-value statistics of stochastic transport processes
    Guillet, Alexandre
    Roldan, Edgar
    Juelicher, Frank
    NEW JOURNAL OF PHYSICS, 2020, 22 (12):
  • [8] EXTREME-VALUE STATISTICS FOR NONLINEAR STRESS COMBINATION
    MADSEN, HO
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1985, 111 (09): : 1121 - 1129
  • [9] Extreme-Value Statistics for Testing Dark Energy
    Aiola, Simone
    Kosowsky, Arthur
    Wang, Bingjie
    STATISTICAL CHALLENGES IN 21ST CENTURY COSMOLOGY, 2015, 10 (306): : 54 - 56
  • [10] Extreme-value statistics of networks with inhibitory and excitatory couplings
    Dwivedi, Sanjiv Kumar
    Jalan, Sarika
    PHYSICAL REVIEW E, 2013, 87 (04):