Phonological processing in human auditory cortical fields

被引:20
|
作者
Woods, David L. [1 ,2 ,3 ,4 ]
Herron, Timothy J.
Cate, Anthony D.
Kang, Xiaojian [2 ]
Yund, E. W.
机构
[1] No Calif Hlth Care Syst, Dept Vet Affairs, Neurol Serv 127E, Human Cognit Neurophysiol Lab, Martinez, CA 94553 USA
[2] Univ Calif Davis, Dept Neurol, Davis, CA 95616 USA
[3] Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA
[4] Univ Calif Davis, Ctr Mind & Brain, Davis, CA 95616 USA
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2011年 / 5卷
关键词
fMRI; phonemes; auditory cortex; selective attention; asymmetry; consonant; primary auditory cortex; speech; SUPERIOR TEMPORAL REGION; SURFACE-BASED ANALYSIS; VOICE-ONSET TIME; FUNCTIONAL SPECIALIZATION; CONSONANT IDENTIFICATION; SPEECH-PERCEPTION; COMPLEX SOUNDS; CORTEX; REPRESENTATION; SELECTIVITY;
D O I
10.3389/fnhum.2011.00042
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We used population-based cortical-surface analysis of functional magnetic imaging data to characterize the processing of consonant-vowel-consonant syllables (CVCs) and spectrally matched amplitude-modulated noise bursts (AMNBs) in human auditory cortex as subjects attended to auditory or visual stimuli in an intermodal selective attention paradigm. Average auditory cortical field (ACF) locations were defined using tonotopic mapping in a previous study. Activations in auditory cortex were defined by two stimulus-preference gradients: (1) Medial belt ACFs preferred AMNBs and lateral belt and parabelt fields preferred CVCs. This preference extended into core ACFs with medial regions of primary auditory cortex (A1) and the rostral field preferring AMNBs and lateral regions preferring CVCs. (2) Anterior ACFs showed smaller activations but more clearly defined stimulus preferences than did posterior ACFs. Stimulus preference gradients were unaffected by auditory attention suggesting that ACF preferences reflect the automatic processing of different spectrotemporal sound features.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Functional properties of human auditory cortical fields
    Woods, David L.
    Herron, Timothy J.
    Cate, Anthony D.
    Yund, E. William
    Stecker, G. Christopher
    Rinne, Teemu
    Kang, X.
    FRONTIERS IN SYSTEMS NEUROSCIENCE, 2010, 4
  • [2] Human cortical processing of auditory events over time
    May, P
    Tiitinen, H
    NEUROREPORT, 2001, 12 (03) : 573 - 577
  • [3] Human auditory cortical processing of changes in interaural correlation
    Chait, M
    Poeppel, D
    de Cheveigné, A
    Simon, JZ
    JOURNAL OF NEUROSCIENCE, 2005, 25 (37): : 8518 - 8527
  • [4] Auditory processing, acoustic reflex and phonological expression
    Attoni, Tiago Mendonca
    Quintas, Victor Gandra
    Mota, Helena Bolli
    BRAZILIAN JOURNAL OF OTORHINOLARYNGOLOGY, 2010, 76 (06) : 753 - 761
  • [5] Human auditory cortical processing of transitions between 'order' and 'disorder'
    Chait, Maria
    Poeppel, David
    Simon, Jonathan Z.
    HEARING - FROM SENSORY PROCESSING TO PERCEPTION, 2007, : 323 - +
  • [6] Auditory processing and phonological processing do not correlate in preschool children
    Ptok, M.
    LARYNGO-RHINO-OTOLOGIE, 2007, 86 (08) : 574 - 578
  • [7] Temporal envelope processing in the human auditory cortex:: Response and interconnections of auditory cortical areas
    Gourevitch, Boris
    Jeannes, Regine Le Bouquin
    Faucon, Gerard
    Liegeois-Chauvel, Catherine
    HEARING RESEARCH, 2008, 237 (1-2) : 1 - 18
  • [8] Auditory cortical spatial receptive fields
    Brugge, JF
    Reale, RA
    Jenison, RL
    Schnupp, J
    AUDIOLOGY AND NEURO-OTOLOGY, 2001, 6 (04) : 173 - 177
  • [9] Temporal aspects of human auditory cortical processing - Neuromagnetic and psychoacoustical data
    Hari, R
    ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, 1997, : 321 - 328
  • [10] Neural Dynamics of Phonological Processing in the Dorsal Auditory Stream
    Liebenthal, Einat
    Sabri, Merav
    Beardsley, Scott A.
    Mangalathu-Arumana, Jain
    Desai, Anjali
    JOURNAL OF NEUROSCIENCE, 2013, 33 (39): : 15414 - 15424