HIGHLY UNDERSAMPLED MRI USING ADAPTIVE SPARSE REPRESENTATIONS

被引:0
|
作者
Ravishankar, Saiprasad [1 ]
Bresler, Yoram [2 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, 1406 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Magnetic resonance imaging; Image reconstruction; dictionary learning; Compressed sensing; IMAGE-RECONSTRUCTION; ALGORITHM;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Compressed sensing (CS) exploits the sparsity of MR images to enable accurate reconstruction from undersampled k-space data. Recent CS methods have employed analytical sparsifying transforms such as wavelets and finite differences. In this paper, we propose a novel framework for adaptively learning the sparsifying transform (dictionary), and reconstructing the image simultaneously from highly undersampled k-space data. The sparsity is enforced on overlapping image patches. The proposed alternating reconstruction algorithm learns the sparsifying dictionary, and uses it to remove aliasing and noise in one step, and subsequently restores and fills-in the k-space data in the other step. Experimental results demonstrate dramatic improvements in reconstruction error using the proposed adaptive dictionary as compared to previous CS methods.
引用
收藏
页码:1585 / 1588
页数:4
相关论文
共 50 条
  • [1] DCE-MRI Analysis Using Sparse Adaptive Representations
    Chiusano, Gabriele
    Stagliano, Alessandra
    Basso, Curzio
    Verri, Alessandro
    MACHINE LEARNING IN MEDICAL IMAGING, 2011, 7009 : 67 - 74
  • [2] Graph Regularized Sparse Coding Method for Highly Undersampled MRI Reconstruction
    张明辉
    尹子瑞
    卢红阳
    吴建华
    刘且根
    JournalofDonghuaUniversity(EnglishEdition), 2015, 32 (03) : 434 - 441
  • [3] Graph regularized sparse coding method for highly undersampled MRI reconstruction
    Department of Electronic Information Engineering, Nanchang University, Nanchang, China
    J. Donghua Univ., 3 (434-441):
  • [4] Highly accelerated MRI using undersampled acquisition and HYPR processing
    Mistretta, C.
    Wieben, O.
    Velikina, J.
    Wu, Y.
    Johnson, K.
    Korosec, F.
    Fain, S.
    Block, W.
    Wu, Y.
    Perry, J.
    Keith, L.
    Kecskemeti, S.
    Khansa, I.
    Wang, K.
    Grist, T.
    Reeder, S.
    Lum, D.
    Turk, A.
    Aagard-Kienitz, B.
    Turski, P.
    MEDICAL PHYSICS, 2007, 34 (06) : 2598 - 2598
  • [5] An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction
    Pezzotti, Nicola
    Yousefi, Sahar
    Elmahdy, Mohamed S.
    Van Gemert, Jeroen Hendrikus Fransiscus
    Schuelke, Christophe
    Doneva, Mariya
    Nielsen, Tim
    Kastryulin, Sergey
    Lelieveldt, Boudewijn P. F.
    Van Osch, Matthias J. P.
    De Weerdt, Elwin
    Staring, Marius
    IEEE ACCESS, 2020, 8 : 204825 - 204838
  • [6] REDUCED INTERFERENCE TIME-FREQUENCY REPRESENTATIONS AND SPARSE RECONSTRUCTION OF UNDERSAMPLED DATA
    Zhang, Yimin D.
    Amin, Moeness G.
    Himed, Braham
    2013 PROCEEDINGS OF THE 21ST EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2013,
  • [7] Improving brain MRI denoising using convolutional AutoEncoder and sparse representations
    Velayudham, A.
    Kumar, K. Madhan
    Priya, M. S. Krishna
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [8] Sparse Multiresolution Representations With Adaptive Kernels
    Peifer, Maria
    Chamon, Luiz F. O.
    Paternain, Santiago
    Ribeiro, Alejandro
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2031 - 2044
  • [9] Image Compression using Adaptive Sparse Representations over Trained Dictionaries
    Akbari, Ali
    Trocan, Maria
    Granado, Bernard
    2016 IEEE 18TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2016,
  • [10] ADAPTIVE APPROACH FOR SPARSE REPRESENTATIONS USING THE LOCALLY COMPETITIVE ALGORITHM FOR AUDIO
    Bahadi, Soufiyan
    Rouat, Jean
    Plourde, Eric
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,