Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA

被引:201
作者
Bracken, C
Carr, PA
Cavanagh, J
Palmer, AG
机构
[1] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY 10032 USA
[2] New York State Dept Hlth, Wadsworth Ctr Labs & Res, NMR Struct Biol Facil, Albany, NY 12201 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
GCN4; dynamics; DNA binding; NMR spectroscopy; chemical shifts;
D O I
10.1006/jmbi.1998.2429
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The basic leucine zipper domain of the yeast transcription factor GCN4 consists of a C-terminal leucine zipper and an N-terminal basic DNA-binding region that achieves a stable structure only after association with DNA. Backbone dynamics of a peptide encompassing the basic and leucine zipper bZip domain (residues 226-281) are described using NMR spectroscopy. The N-15 longitudinal relaxation rates, N-15 transverse relaxation rates, and (H-1)-N-15 nuclear Overhauser effects were measured for the backbone amide nitrogen atoms at 290 K, 300 K, and 310 K. The relaxation data were interpreted using reduced spectral density mapping to determine values of the spectral density function, J(omega), at the frequencies 0, omega(N), and 0.87 omega(H) to characterize overall and intramolecular motions on picosecond-nanosecond timescales. To account for the temperature dependence of overall rotational diffusion, the J(0) values were normalized using Stoke's Law. At 310 K, the C-13(alpha) and (CO)-C-13 chemical shifts in conjunction with the spectral density values indicate that the leucine zipper sequence forms a highly ordered alpha-helix, while the basic region populates an ensemble of highly dynamic transient structures with substantial helical character. The normalized values of J(0) and the values of J(0.87 omega(H)) for residues in the leucine zipper dimerization domain are independent of temperature. Ln contrast, residues in the basic region exhibit pronounced increases in the normalized J(0) and decreases in J(0.87 omega(H)) as temperature is decreased. A strong correlation exists between the temperature dependence of C-13 chemical shifts and of J(0.87 omega(H)). These results suggest that, for the basic region, lowering the temperature increases the population of transient helical conformations, and concomitantly reduces the amplitude or timescale of conformational fluctuations on picosecond-nanosecond timescales. Changes in the conformational dynamics of the peptide backbone of the basic region that accompany DNA binding contribute to the overall thermodynamics of complex formation. The change in backbone conformational entropy derived from NMR spin-relaxation data agrees well with the result calculated from calorimetric measurements. Restriction of the conformational space accessible to the basic region may significantly reduce the entropic cost associated with formation of the basic region helices consequent to DNA binding. (C) 1999 Academic Press.
引用
收藏
页码:2133 / 2146
页数:14
相关论文
共 75 条
[1]   NMR ORDER PARAMETERS AND FREE-ENERGY - AN ANALYTICAL APPROACH AND ITS APPLICATION TO COOPERATIVE CA2+ BINDING BY CALBINDIN-D(9K) [J].
AKKE, M ;
BRUSCHWEILER, R ;
PALMER, AG .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (21) :9832-9833
[2]   CO_H(N)CACB experiments for assigning backbone resonances in 13C/15N-labeled proteins [J].
Astrof, N ;
Bracken, C ;
Cavanagh, J ;
Palmer, AG .
JOURNAL OF BIOMOLECULAR NMR, 1998, 11 (04) :451-456
[3]   BACKBONE DYNAMICS OF CALMODULIN STUDIED BY N-15 RELAXATION USING INVERSE DETECTED 2-DIMENSIONAL NMR-SPECTROSCOPY - THE CENTRAL HELIX IS FLEXIBLE [J].
BARBATO, G ;
IKURA, M ;
KAY, LE ;
PASTOR, RW ;
BAX, A .
BIOCHEMISTRY, 1992, 31 (23) :5269-5278
[4]   IMPROVED ALGORITHM FOR NONITERATIVE TIME-DOMAIN MODEL-FITTING TO EXPONENTIALLY DAMPED MAGNETIC-RESONANCE SIGNALS [J].
BARKHUIJSEN, H ;
DEBEER, R ;
VANORMONDT, D .
JOURNAL OF MAGNETIC RESONANCE, 1987, 73 (03) :553-557
[5]   Coupled folding and site-specific binding of the GCN4-bZIP transcription factor to the AP-1 and ATF/CREB DNA sites studied by microcalorimetry [J].
Berger, C ;
Jelesarov, I ;
Bosshard, HR .
BIOCHEMISTRY, 1996, 35 (47) :14984-14991
[6]   NMR CHEMICAL-SHIFTS - A TOOL TO CHARACTERIZE DISTORTIONS OF PEPTIDE AND PROTEIN HELICES [J].
BLANCO, FJ ;
HERRANZ, J ;
GONZALEZ, C ;
JIMENEZ, MA ;
RICO, M ;
SANTORO, J ;
NIETO, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (24) :9676-9677
[7]   (H)N(COCA)NH and (HN)under-bar(COCA)NH experiments for H-1-N-15 backbone assignments in C-13/N-15-labeled proteins [J].
Bracken, C ;
Palmer, AG ;
Cavanagh, J .
JOURNAL OF BIOMOLECULAR NMR, 1997, 9 (01) :94-100
[8]   Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation [J].
Bremi, T ;
Bruschweiler, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (28) :6672-6673
[9]   DETERMINATION OF HELIX AND BETA-FORM OF PROTEINS IN AQUEOUS-SOLUTION BY CIRCULAR-DICHROISM [J].
CHEN, YH ;
YANG, JT ;
CHAU, KH .
BIOCHEMISTRY, 1974, 13 (16) :3350-3359
[10]   SIDE-CHAIN ENTROPY OPPOSES ALPHA-HELIX FORMATION BUT RATIONALIZES EXPERIMENTALLY DETERMINED HELIX-FORMING PROPENSITIES [J].
CREAMER, TP ;
ROSE, GD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (13) :5937-5941