Newton-Type Method for Solving Systems of Linear Equations and Inequalities

被引:1
|
作者
Golikov, A. I. [1 ,2 ]
Evtushenko, Yu. G. [1 ,2 ]
Kaporin, I. E. [1 ,2 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Dorodnitsyn Comp Ctr, Moscow 119333, Russia
[2] Natl Res Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
基金
俄罗斯基础研究基金会;
关键词
systems of linear equations and inequalities; regularization; penalty function method; duality; projection of a point; piecewise quadratic function; Newton's method; preconditioned conjugate gradient method;
D O I
10.1134/S0965542519120091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Newton-type method is proposed for numerical minimization of convex piecewise quadratic functions, and its convergence is analyzed. Previously, a similar method was successfully applied to optimization problems arising in mesh generation. It is shown that the method is applicable to computing the projection of a given point onto the set of nonnegative solutions of a system of linear equations and to determining the distance between two convex polyhedra. The performance of the method is tested on a set of problems from the NETLIB repository.
引用
收藏
页码:2017 / 2032
页数:16
相关论文
共 50 条
  • [1] Newton-Type Method for Solving Systems of Linear Equations and Inequalities
    A. I. Golikov
    Yu. G. Evtushenko
    I. E. Kaporin
    Computational Mathematics and Mathematical Physics, 2019, 59 : 2017 - 2032
  • [2] Introduction to a Newton-type method for solving nonlinear equations
    Thukral, R.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 663 - 668
  • [3] Newton-Type Method for Solving Generalized Equations on Riemannian Manifolds
    Adly, Samir
    Huynh Van Ngai
    Nguyen Van Vu
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (02) : 341 - 370
  • [4] Newton-type method for solving generalized inclusion
    Santos, P. S. M.
    Silva, G. N.
    Silva, R. C. M.
    NUMERICAL ALGORITHMS, 2021, 88 (04) : 1811 - 1829
  • [5] A Newton-type technique for solving absolute value equations
    Khan, Alamgir
    Iqbal, Javed
    Akgul, Ali
    Ali, Rashid
    Du, Yuting
    Hussain, Arafat
    Nisar, Kottakkaran Sooppy
    Vijayakumar, V.
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 64 : 291 - 296
  • [6] Newton-type method for solving generalized inclusion
    P. S. M. Santos
    G. N. Silva
    R. C. M. Silva
    Numerical Algorithms, 2021, 88 : 1811 - 1829
  • [7] A family of Newton-type methods for solving nonlinear equations
    Salkuyeh, Davod Khojasteh
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (03) : 411 - 419
  • [8] Generalized conformable fractional Newton-type method for solving nonlinear systems
    Candelario, Giro
    Cordero, Alicia
    Torregrosa, Juan R. R.
    Vassileva, Maria P.
    NUMERICAL ALGORITHMS, 2023, 93 (03) : 1171 - 1208
  • [9] Generalized conformable fractional Newton-type method for solving nonlinear systems
    Giro Candelario
    Alicia Cordero
    Juan R. Torregrosa
    María P. Vassileva
    Numerical Algorithms, 2023, 93 : 1171 - 1208
  • [10] On Newton-type approach for piecewise linear systems
    Chen, Jinhai
    Agarwal, Ravi P.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (07) : 1463 - 1471