Instability dynamics of nonlinear normal modes in the Fermi-Pasta-Ulam-Tsingou chains

被引:1
|
作者
Peng, Liangtao [1 ]
Fu, Weicheng [2 ,3 ]
Zhang, Yong [1 ,3 ]
Zhao, Hong [1 ,3 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Fujian, Peoples R China
[2] Tianshui Normal Univ, Dept Phys, Tianshui 741001, Gansu, Peoples R China
[3] Lanzhou Univ, Lanzhou Ctr Theoret Phys, Key Lab Theoret Phys Gansu Prov, Lanzhou 730000, Gansu, Peoples R China
关键词
Fermi-Pasta-Ulam-Tsingou chains; nonlinear normal modes; instability dynamics; Floquet theory; VIBRATIONAL-MODES; STABILITY; BUSHES;
D O I
10.1088/1367-2630/ac8ac3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Nonlinear normal modes are periodic orbits that survive in nonlinear chains, whose instability plays a crucial role in the dynamics of many-body Hamiltonian systems toward thermalization. Here we focus on how the stability of nonlinear modes depends on the perturbation strength and the system size to observe whether they have the same behavior in different models. To this end, as illustrating examples, the instability dynamics of the N/2 mode in both the Fermi-Pasta-Ulam-Tsingou-alpha and -beta chains under fixed boundary conditions are studied systematically. Applying the Floquet theory, we show that for both models the stability time T as a function of the perturbation strength lambda follows the same behavior; i.e., T proportional to (lambda - lambda(c))(-1/2), where lambda(c) is the instability threshold. The dependence of lambda(c) on N is also obtained. The results of T and lambda(c) agree well with those obtained by the direct molecular dynamics simulations. Finally, the effect of instability dynamics on the thermalization properties of a system is briefly discussed.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Nonlinear normal modes in the β-Fermi-Pasta-Ulam-Tsingou chain
    Fuller, Nathaniel J.
    Sen, Surajit
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 553
  • [2] Nonlinear normal modes in the β-Fermi-Pasta-Ulam-Tsingou chain
    Fuller, Nathaniel J.
    Sen, Surajit
    arXiv, 2019,
  • [3] Fermi-Pasta-Ulam-Tsingou recurrence in spatial optical dynamics
    Pierangeli, D.
    Flammini, M.
    Zhang, L.
    Marcucci, G.
    Agranat, A. J.
    Grinevich, P. G.
    Santini, P. M.
    Conti, C.
    DelRe, E.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [4] The β Fermi-Pasta-Ulam-Tsingou recurrence problem
    Pace, Salvatore D.
    Reiss, Kevin A.
    Campbell, David K.
    CHAOS, 2019, 29 (11)
  • [5] q-Breathers in the diatomic β-Fermi-Pasta-Ulam-Tsingou chains
    Deng, Lin
    Yu, Hang
    Zhu, Zhigang
    Fu, Weicheng
    Wang, Yisen
    Huang, Liang
    NEW JOURNAL OF PHYSICS, 2025, 27 (03):
  • [6] Near-integrable dynamics of the Fermi-Pasta-Ulam-Tsingou problem
    Hofstrand, Andrew
    PHYSICAL REVIEW E, 2024, 109 (03)
  • [7] Dispersive fractalisation in linear and nonlinear Fermi-Pasta-Ulam-Tsingou lattices
    Olver, Peter J.
    Stern, Ari
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (05) : 820 - 845
  • [8] Observation of Fermi-Pasta-Ulam-Tsingou Recurrence and Its Exact Dynamics
    Pierangeli, D.
    Flammini, M.
    Zhang, L.
    Marcucci, G.
    Agranat, A. J.
    Grinevich, P. G.
    Santini, P. M.
    Conti, C.
    DelRe, E.
    PHYSICAL REVIEW X, 2018, 8 (04):
  • [9] Periodic orbits in Fermi-Pasta-Ulam-Tsingou systems
    Karve, Nachiket
    Rose, Nathan
    Campbell, David
    CHAOS, 2024, 34 (09)
  • [10] Vortex revivals and Fermi-Pasta-Ulam-Tsingou recurrence
    Paredes, Angel
    Blanco-Labrador, Jose
    Olivieri, David N.
    Salgueiro, Jose R.
    Michinel, Humberto
    PHYSICAL REVIEW E, 2019, 99 (06)