Doxorubicin (Dox)-induced cardiotoxicity constitutes the major adverse effect that limited its use. We investigated the possible protective effects of liraglutide on Dox-induced cardiotoxicity in rats. Rats were divided into the following groups: control group rats received normal saline [1 ml/kg, intraperitoneal (i.p.)]; doxorubicin group rats received doxorubicin (1.25 mg/kg, i.p.), four times per week for 4 weeks; and liraglutide group rats received doxorubicin (1.25 mg/kg, i.p.) four times per week for 4 weeks then received liraglutide (100 mu g/kg, i.p) daily for 4 weeks. At the end of the study, animals were sacrificed and serum creatine kinase-MB (CK-MB) and troponin I levels were determined. Malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), and caspase-3 levels of the heart were determined. Cardiac AMPK, phosphorylated-Akt, tissue growth factor-beta 1 (TGF-beta 1), and GSK3-beta levels of the heart were determined. Hematoxylin and eosin (H&E) stained sections form the heart were examined as well as immunohistochemical sections for detection of Bcl-2 expression. Dox treatment increased serum level of troponin I and CK-MB while decreased SOD activity, decreased AMPK, and p-Akt cardiac levels with increased in MDA, IL-6, TNF-alpha,GSK-3b, TGFB1, and caspase-3 levels in the heart with inflammation and necrosis in cardiac histopathology with decreased Bcl-2. Treatment with liraglutide decreased troponin I and CK-MB while increased SOD activity, AMPK, p-Akt with decrements in MDA, IL-6, TNF-alpha, GSK-3 beta, TGF-beta 1, and caspase-3 levels with attenuation of inflammation and necrosis while increased Bcl-2 expression. Liraglutide may thus represent a new clinical tool for the treatment of Dox-induced cardiotoxicity.