Bregman divergence as relative operator entropy

被引:15
|
作者
Petz, D. [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1053 Budapest, Hungary
关键词
Bregman divergence; f-divergence; quantum relative entropy;
D O I
10.1007/s10474-007-6014-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Bregman operator divergence is introduced for density matrices by differentiation of the matrix-valued function x -> x log x. This quantity is compared with the relative operator entropy of Fujii and Kamei. It turns out that the trace is the usual Umegaki's relative entropy which is the only intersection of the classes of quasi-entropies and Bregman divergences.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 50 条
  • [1] Bregman divergence as relative operator entropy
    D. Petz
    Acta Mathematica Hungarica, 2007, 116 : 127 - 131
  • [2] A characterization of statistical manifolds on which the relative entropy is a Bregman divergence
    Nagaoka, Hiroshi
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1656 - 1659
  • [3] A RELATIVE ReNYI OPERATOR ENTROPY
    Jeong, Miran
    Kim, Sejong
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (01): : 123 - 132
  • [4] OPERATOR INEQUALITIES ASSOCIATED WITH TSALLIS RELATIVE OPERATOR ENTROPY
    Zou, Limin
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 401 - 406
  • [5] A note on operator inequalities of Tsallis relative operator entropy
    Furuichi, S
    Yanagi, K
    Kuriyama, K
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 407 : 19 - 31
  • [6] Inequalities for relative operator entropy in terms of Tsallis' entropy
    Dragomir, S. S.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (04)
  • [7] The Bregman Chord Divergence
    Nielsen, Frank
    Nock, Richard
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 299 - 308
  • [8] ESTIMATES FOR TSALLIS RELATIVE OPERATOR ENTROPY
    Moradi, Hamid Reza
    Furuichi, Shigeru
    Minculete, Nicusor
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 1079 - 1088
  • [9] The relative operator entropy and the Karcher mean
    Fujii, Jun Ichi
    Seo, Yuki
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 542 : 4 - 34
  • [10] Functional Bregman Divergence
    Frigyik, Bela A.
    Srivastava, Santosh
    Gupta, Maya R.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1681 - +