ON THE FOURIER COEFFICIENTS OF LINEAR FRACTIONAL STABLE MOTION

被引:0
|
作者
Manstavicius, Martynas [1 ]
机构
[1] Vilnius State Univ, Fac Math & Informat, LT-03225 Vilnius, Lithuania
关键词
linear fractional stable motion; p-variation index; Fourier coefficients; Riemann-Liouville process;
D O I
10.1007/s10986-011-9135-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by a theorem of Marcinkiewicz [J. Marcinkiewicz, On a class of functions and their Fourier series, C. R. Soc. Sci. Varsovie, 26: 71-77, 1934. Reprinted in: J. Marcinkiewicz, Collected Papers (A. Zygmund (Ed.)), Panstwowe Wydawnictwo Naukowe, Warsaw, 1964] stating that the maximum of the absolute values of real Fourier coefficients a(n) and b(n) of a function of bounded p-variation (p >= 1) on an interval [0, 1] is of order O(n(-1/p)) as n -> infinity, we compute the Fourier coefficients of the linear fractional stable motion (LFSM) and of the closely related Riemann-Liouville (RL) process and investigate the rate of their decay.
引用
收藏
页码:402 / 416
页数:15
相关论文
共 50 条