M-estimation in nonlinear regression for longitudinal data

被引:0
|
作者
Orsakova, Martina [1 ]
机构
[1] Charles Univ Prague, Dept Probabil & Stat, Fac Math & Phys, Prague 18675 8, Czech Republic
关键词
M-estimation; nonlinear regression; longitudinal data;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The longitudinal regression model Z(i)(j) = m(theta(0), X-i(T-i(j))) + epsilon(j)(i), where Z(i)(j) is the jth measurement of the ith subject at random time T-i(j), m is the regression function, Xi(T-i(j).) is a predictable covariate process observed at time T-i(j). and epsilon(j)(i) is a noise, is studied in marked point process framework. In this paper we introduce the assumptions which guarantee the consistency and asymptotic normality of smooth M-estimator of unknown parameter theta(0).
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条