D-D fusion in the interior of Jupiter?

被引:6
|
作者
Ouyed, R [1 ]
Fundamenski, WR
Cripps, GR
Sutherland, PG
机构
[1] St Marys Univ, Dept Phys & Astron, Halifax, NS B3H 3C3, Canada
[2] Univ Toronto, Inst Aerosp Studies, Fus Res Grp, N York, ON M3H 5T6, Canada
[3] McMaster Univ, Dept Engn Phys, Hamilton, ON L8S 4M1, Canada
[4] McMaster Univ, Dept Phys & Astron, Hamilton, ON L8S 4M1, Canada
来源
ASTROPHYSICAL JOURNAL | 1998年 / 501卷 / 01期
关键词
nuclear reactions; nucleosynthesis; abundances; planets and satellites : individual (Jupiter);
D O I
10.1086/305797
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
One of the still uncertain and debated questions about Jupiter is the origin of its excess heat. Understanding the source of such heat will certainly shed some light on the physics of the interior of the planet and on scenarios of its formation. Recent measurements of sound velocities in Jupiter show substantial disagreement with the existing models for the Jovian interior. Analysis of these measurements suggests that helium (He) sedimentation (through H-He phase separation) is plausible in the planet's interior, contrary to what is believed from numerical calculations of H-He mixture at conditions prevailing in Jupiter's deep interior. This signals the need for a revision of the existing models of Jupiter and allows for new models to be explored. While He sedimentation might help shift the calculated sound velocities toward the observed ones, we find that it cannot explain the excess heat. Here, we analyze the consequences of deuterium (D) sedimentation on Jupiter's excess heat and discuss its effects on the sound profiles. Such a sedimentation is assumed to have occurred in the early stages of planet formation (here the core-instability model) through planetesimal vaporization in the deeper parts of the envelope. Our interest in investigating D sedimentation resulted from the recent extrapolations of D-D, D-T, D-He-3, and p-D fusion to electron volt temperatures, which indicate that D-D fusion largely dominates the other reactions under conditions thought to prevail in the interior of early Jupiter. We find that with a modest degree of interior stratification of D (5%-15% of the total D of the planet), D-D burning naturally explains the excess heat given off by the planet. For our model to operate, we find that D sedimentation must occur during the early stages of planet formation (core-instability scenario) when interior temperatures of 16-18 eV where available. Our model is applied to the family of the Jovian planets as a whole.
引用
收藏
页码:367 / 374
页数:8
相关论文
共 50 条
  • [1] Can D-D fusion contribute to Jupiter's excess heat?
    Ouyed, R
    PLANETARY SYSTEMS IN THE UNIVERSE OBSERVATION, FORMATION AND EVOLUTION, 2004, (202): : 280 - 282
  • [2] Helium catalysed D-D fusion in a levitated dipole
    Kesner, J
    Garnier, DT
    Hansen, A
    Mauel, M
    Bromberg, L
    NUCLEAR FUSION, 2004, 44 (01) : 193 - 203
  • [3] D-D NUCLEAR FUSION REACTION IN A HYBRID REACTOR
    KOLESNICHENKO, YI
    REZNIK, SN
    NUCLEAR FUSION, 1976, 16 (01) : 97 - 103
  • [4] A DYNAMIC CALCULATION OF THE ELECTRON SHIELDING FOR D-D FUSION
    BRACCI, L
    FIORENTINI, G
    MEZZORANI, G
    PHYSICS LETTERS A, 1990, 146 (03) : 128 - 133
  • [5] D-D FUSION NEUTRON DIAGNOSTICS WITH NANOSECOND RESOLUTION
    STRINGFI.RM
    DOGGETT, WO
    BENNETT, WH
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (05): : 702 - 702
  • [6] SCREENING IN COLD FUSION DERIVED FROM D-D REACTIONS
    HORA, H
    KELLY, JC
    PATEL, JU
    PRELAS, MA
    MILEY, GH
    TOMPKINS, JW
    PHYSICS LETTERS A, 1993, 175 (02) : 138 - 143
  • [7] NEUTRONICS ANALYSIS OF D-D FUSION-FISSION HYBRIDS
    WOODRUFF, GL
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1979, 32 (JUN): : 43 - 44
  • [8] The feasibility of using D-3He and D-D fusion fuels
    Stott, PE
    PLASMA PHYSICS AND CONTROLLED FUSION, 2005, 47 (08) : 1305 - 1338
  • [9] CATALYZED D-D AND D-HE-3 FUSION BLANKET DESIGNS
    FILLO, JA
    POWELL, JR
    LAZARETH, O
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1977, 26 : 37 - 38
  • [10] DPA Calculation for the D-D Nuclear Fusion Reaction in the KSTAR PFC
    Lee, Bo-Young
    Oh, Joo-Hee
    Ko, Seung-Kook
    Lee, Hee-Seock
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2012, 60 (05) : 773 - 776