GALOIS SUBFIELDS OF TAME DIVISION ALGEBRAS

被引:3
|
作者
Hanke, Timo [1 ]
Neftin, Danny [2 ]
Wadsworth, Adrian [3 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math D, Pontdriesch 14-16, D-52062 Aachen, Germany
[2] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[3] Univ Calif San Diego, Dept Math, 9500 Gilman Dr, La Jolla, CA 92093 USA
关键词
NONCROSSED PRODUCTS;
D O I
10.1007/s11856-015-1275-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a finite-dimensional tame division algebra D over a Henselian field F has a maximal subfield Galois over F if and only if its residue division algebra (D) over bar has a maximal subfield Galois over the residue field (F) over bar. This generalizes the mechanism behind several known noncrossed product constructions to a crossed product criterion for all tame division algebras, and in particular for all division algebras if the residue characteristic is 0. If (F) over bar is a global field, the criterion leads to a description of the location of noncrossed products among tame division algebras, and their discovery in new parts of the Brauer group.
引用
收藏
页码:367 / 389
页数:23
相关论文
共 50 条
  • [1] Galois subfields of tame division algebras
    Timo Hanke
    Danny Neftin
    Adrian Wadsworth
    Israel Journal of Mathematics, 2016, 211 : 367 - 389
  • [2] SUBFIELDS OF NONDEGENERATE TAME SEMIRAMIFIED DIVISION ALGEBRAS
    Mounirh, Karim
    Wadsworth, A. R.
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (02) : 462 - 485
  • [3] KUMMER SUBFIELDS OF TAME DIVISION-ALGEBRAS
    MORANDI, PJ
    SETHURAMAN, BA
    JOURNAL OF ALGEBRA, 1995, 172 (02) : 554 - 583
  • [4] Galois subfields of inertially split division algebras
    Hanke, Timo
    JOURNAL OF ALGEBRA, 2011, 346 (01) : 147 - 151
  • [5] Kummer subfields of tame division algebras over Henselian fields
    Mounirh, Karim
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (04) : 440 - 448
  • [6] Division algebras with PSL(2, q)-Galois maximal subfields
    Allman, ES
    Schacher, MM
    JOURNAL OF ALGEBRA, 2001, 240 (02) : 808 - 821
  • [7] ON GALOIS COVERINGS OF TAME ALGEBRAS
    DOWBOR, P
    SKOWRONSKI, A
    ARCHIV DER MATHEMATIK, 1985, 44 (06) : 522 - 529
  • [8] On Tame Division Algebras
    Beniss, Driss
    El Fadil, Lhoussain
    Mounirh, Karim
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, ICAM'2018, 2019, 2074
  • [9] Division algebras with common subfields
    Daniel Krashen
    Eliyahu Matzri
    Andrei Rapinchuk
    Louis Rowen
    David Saltman
    manuscripta mathematica, 2022, 169 : 209 - 249
  • [10] PATCHING SUBFIELDS OF DIVISION ALGEBRAS
    Harbater, David
    Hartmann, Julia
    Krashen, Daniel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (06) : 3335 - 3349