Incremental autoencoders for text streams clustering in social networks

被引:0
|
作者
Rekik, Amal [1 ,2 ]
Jamoussi, Salma [1 ,2 ]
机构
[1] Sfax Univ, Multimedia InfoRmat Syst & Adv Comp Lab, MIRACL, Sfax, Tunisia
[2] DRCS, Digital Res Ctr Sfax, Sfax, Tunisia
关键词
Social network;   Topic extraction; Data streams; Clustering; Deep learning; Incremental Stacked autoencoder;
D O I
10.3897/jucs.76770
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Clustering data streams in order to detect trending topic on social networks is a challenging task that interests the researchers in the big data field. In fact, analyzing such data needs several requirements to be addressed due to their large amount and evolving nature. For this purpose, we propose, in this paper, a new evolving clustering method which can take into account the incremental nature of the data and meet with its principal requirements. Our method explores a deep learning technique to learn incrementally from unlabelled examples generated at high speed which need to be clustered instantly. To evaluate the performance of our method, we have conducted several experiments using the Sanders, HCR and Terr-Attacks datasets.
引用
收藏
页码:1203 / 1221
页数:19
相关论文
共 50 条
  • [1] INCREMENTAL CLUSTERING IN SHORT TEXT STREAMS BASED ON BM25
    Xu, Lixin
    Chen, Guang
    Yang, Lei
    2014 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2014, : 8 - 12
  • [2] Clustering Text Data Streams
    刘玉葆
    蔡嘉荣
    印鉴
    傅蔚慈
    JournalofComputerScience&Technology, 2008, 23 (01) : 112 - 128
  • [3] Clustering Text Data Streams
    Yu-Bao Liu
    Jia-Rong Cai
    Jian Yin
    Ada Wai-Chee Fu
    Journal of Computer Science and Technology, 2008, 23 : 112 - 128
  • [4] Clustering text data streams
    Liu, Yu-Bao
    Cai, Jia-Rong
    Yin, Jian
    Fu, Ada Wai-Chee
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2008, 23 (01) : 112 - 128
  • [5] Incremental K-clique clustering in dynamic social networks
    Dongsheng Duan
    Yuhua Li
    Ruixuan Li
    Zhengding Lu
    Artificial Intelligence Review, 2012, 38 : 129 - 147
  • [6] Incremental K-clique clustering in dynamic social networks
    Duan, Dongsheng
    Li, Yuhua
    Li, Ruixuan
    Lu, Zhengding
    ARTIFICIAL INTELLIGENCE REVIEW, 2012, 38 (02) : 129 - 147
  • [7] Text documents streams with improved incremental similarity
    Sarmento, Rui Portocarrero
    O. Cardoso, Douglas
    Dearo, Kemmily
    Brazdil, Pavel
    Gama, Joao
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [8] Text documents streams with improved incremental similarity
    Rui Portocarrero Sarmento
    Douglas O. Cardoso
    Kemmily Dearo
    Pavel Brazdil
    João Gama
    Social Network Analysis and Mining, 2021, 11
  • [9] Incremental algorithm of text soft clustering
    Feng, Zhonghui
    Bao, Junpeng
    Shen, Junyi
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2007, 41 (04): : 398 - 401
  • [10] Efficient incremental subspace clustering in data streams
    Kontaki, Maria
    Papadopoulos, Apostolos N.
    Manolopoulos, Yannis
    10TH INTERNATIONAL DATABASE ENGINEERING AND APPLICATIONS SYMPOSIUM, PROCEEDINGS, 2006, : 53 - 60