On k-uniform random hypergraphs without generalized fans

被引:1
|
作者
Gu, Ran [1 ]
Lei, Hui [2 ,3 ]
Shi, Yongtang [4 ,5 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Nankai Univ, Sch Stat & Data Sci, LPMC, Tianjin 300071, Peoples R China
[3] Nankai Univ, KLMDASR, Tianjin 300071, Peoples R China
[4] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[5] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Mantel's theorem; Random hypergraphs; Tulin number; MANTELS THEOREM;
D O I
10.1016/j.dam.2021.09.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let the k-uniform hypergraph Fan(k) consist of k edges that pairwise intersect exactly in one vertex x, plus one more edge intersecting each of these edges in a vertex different from x. Mubayi and Pikhurko (2007), determined the exact Turan number ex(n, Fan(k)) of Fan(k) for sufficiently large n, which provides a generalization of Mantel's theorem. In this paper, we give a sparse version of Mubayi and Pikhurko's result. For a fixed integer k (k >= 3), let G(k) (n, p) be a probability space consisting of k-uniform hypergraphs with n vertices, in which each element of (([n])(k)) occurring independently as an edge with probability p. We show that there exists a positive constant K such that with high probability the following is true. If p > K/n, then every maximum Fan(k)-free subhypergraph of G(k)(n, p) is k-partite for k >= 4; and if p > K(logn)(gamma)/n, where gamma > 0 is an absolute constant, then every maximum Fan(3)-free subhypergraph of G(3)(n, p) is tripartite. Our result is an exact version of a random analogue of the stability result of Fan(k)-free(k)-graphs, which can be obtained by using the transference theorem given by Samotij (2014). (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 107
页数:10
相关论文
共 50 条
  • [1] Isomorphism for random k-uniform hypergraphs
    Chakraborti, Debsoumya
    Frieze, Alan
    Haber, Simi
    Hasabnis, Mihir
    Frieze, Alan (alan@random.math.cmu.edu), 1600, Elsevier B.V. (166):
  • [2] Isomorphism for random k-uniform hypergraphs
    Chakraborti, Debsoumya
    Frieze, Alan
    Haber, Simi
    Hasabnis, Mihir
    INFORMATION PROCESSING LETTERS, 2021, 166
  • [3] The VC dimension of k-uniform random hypergraphs
    Ycart, B.
    Ratsaby, J.
    RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (04) : 564 - 572
  • [4] Ramsey properties of random k-partite, k-uniform hypergraphs
    Rodl, Vojtech
    Rucinski, Andrzej
    Schacht, Mathias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) : 442 - 460
  • [5] On the Laplacian spectrum of k-uniform hypergraphs
    Saha, S. S.
    Sharma, K.
    Panda, S. K.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 655 : 1 - 27
  • [6] FREQUENCY PARTITIONS OF K-UNIFORM HYPERGRAPHS
    BHATNAYAK, VN
    NAIK, RN
    UTILITAS MATHEMATICA, 1985, 28 : 99 - 104
  • [7] Cycle decompositions in k-uniform hypergraphs
    Lo, Allan
    Piga, Simon
    Sanhueza-Matamala, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 55 - 103
  • [8] Analytic connectivity of k-uniform hypergraphs
    Li, Wei
    Cooper, Joshua
    Chang, An
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (06): : 1247 - 1259
  • [9] Regularity lemma for k-uniform hypergraphs
    Rödl, V
    Skokan, J
    RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (01) : 1 - 42
  • [10] On the distance energy of k-uniform hypergraphs
    Sharma, Kshitij
    Panda, Swarup Kumar
    SPECIAL MATRICES, 2023, 11 (01):