One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation

被引:95
|
作者
Liu, Zhengzhe [1 ]
Qi, Xiaojuan [2 ]
Fu, Chi-Wing [1 ]
机构
[1] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[2] Univ Hong Kong, Hong Kong, Peoples R China
关键词
NETWORKS;
D O I
10.1109/CVPR46437.2021.00177
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud semantic segmentation often requires large-scale annotated training data, but clearly, point-wise labels are too tedious to prepare. While some recent methods propose to train a 3D network with small percentages of point labels, we take the approach to an extreme and propose "One Thing One Click," meaning that the annotator only needs to label one point per object. To leverage these extremely sparse labels in network training, we design a novel self-training approach, in which we iteratively conduct the training and label propagation, facilitated by a graph propagation module. Also, we adopt a relation network to generate the per-category prototype and explicitly model the similarity among graph nodes to generate pseudo labels to guide the iterative training. Experimental results on both ScanNet-v2 and S3DIS show that our self-training approach, with extremely-sparse annotations, outperforms all existing weakly supervised methods for 3D semantic segmentation by a large margin, and our results are also comparable to those of the fully supervised counterparts.
引用
收藏
页码:1726 / 1736
页数:11
相关论文
共 50 条
  • [1] Active self-training for weakly supervised 3D scene semantic segmentation
    Liu, Gengxin
    van Kaick, Oliver
    Huang, Hui
    Hu, Ruizhen
    COMPUTATIONAL VISUAL MEDIA, 2024, 10 (06) : 1063 - 1078
  • [2] Active self-training for weakly supervised 3D scene semantic segmentation
    Gengxin Liu
    Oliver van Kaick
    Hui Huang
    Ruizhen Hu
    Computational Visual Media, 2024, 10 : 425 - 438
  • [3] Weakly-Supervised Semantic Segmentation via Self-training
    Cheng, Hao
    Gu, Chaochen
    Wu, Kaijie
    2020 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING AND ARTIFICIAL INTELLIGENCE (CCEAI 2020), 2020, 1487
  • [4] Bayesian Self-training for Semi-supervised 3D Segmentation
    Unal, Ozan
    Sakaridis, Christos
    Van Gool, Luc
    COMPUTER VISION - ECCV 2024, PT LVI, 2025, 15114 : 89 - 107
  • [5] A Self-Training Framework Based on Multi-Scale Attention Fusion for Weakly Supervised Semantic Segmentation
    Yang, Guoqing
    Zhu, Chuang
    Zhang, Yu
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 876 - 881
  • [6] PointMatch: A consistency training framework for weakly supervised semantic segmentation of 3D point clouds
    Wu, Yushuang
    Yan, Zizheng
    Cai, Shengcai
    Li, Guanbin
    Han, Xiaoguang
    Cui, Shuguang
    COMPUTERS & GRAPHICS-UK, 2023, 116 : 427 - 436
  • [7] One-Shot Weakly-Supervised Segmentation in 3D Medical Images
    Lei, Wenhui
    Su, Qi
    Jiang, Tianyu
    Gu, Ran
    Wang, Na
    Liu, Xinglong
    Wang, Guotai
    Zhang, Xiaofan
    Zhang, Shaoting
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (01) : 175 - 189
  • [8] One Class One Click: Quasi scene-level weakly supervised point cloud semantic segmentation with active learning
    Wang, Puzuo
    Yao, Wei
    Shao, Jie
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 204 : 89 - 104
  • [9] A survey on weakly supervised 3D point cloud semantic segmentation
    Wang, Jingyi
    Liu, Yu
    Tan, Hanlin
    Zhang, Maojun
    IET COMPUTER VISION, 2024, 18 (03) : 329 - 342
  • [10] GECNN for Weakly Supervised Semantic Segmentation of 3D Point Clouds
    He, Zifen
    Zhu, Shouye
    Huang, Ying
    Zhang, Yinhui
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2237 - 2243