CONVERGENCE OF SOME ADAPTIVE FEM-BEM COUPLING FOR ELLIPTIC BUT POSSIBLY NONLINEAR INTERFACE PROBLEMS

被引:13
|
作者
Aurada, Markus [1 ]
Feischl, Michael [1 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
FEM-BEM coupling; a posteriori error estimate; adaptive algorithm; convergence; AVERAGING TECHNIQUES; INTEGRAL-EQUATION; ELEMENTS;
D O I
10.1051/m2an/2011075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the symmetric FEM-BEM coupling for the numerical solution of a (nonlinear) interface problem for the 2D Laplacian. We introduce some new a posteriori error estimators based on the (h - h/2)-error estimation strategy. In particular, these include the approximation error for the boundary data, which allows to work with discrete boundary integral operators only. Using the concept of estimator reduction, we prove that the proposed adaptive algorithm is convergent in the sense that it drives the underlying error estimator to zero. Numerical experiments underline the reliability and efficiency of the considered adaptive mesh-refinement.
引用
收藏
页码:1147 / 1173
页数:27
相关论文
共 50 条