Nonexistence of positive supersolutions to a class of semilinear elliptic equations and systems in an exterior domain

被引:7
|
作者
Chen, Huyuan [1 ]
Peng, Rui [2 ]
Zhou, Feng [3 ,4 ]
机构
[1] Jiangxi Normal Univ, Dept Math, Nanchang 330022, Jiangxi, Peoples R China
[2] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Jiangsu, Peoples R China
[3] East China Normal Univ, Ctr PDEs, Shanghai 200241, Peoples R China
[4] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
semilinear elliptic problem; supersolution; nonexistence; THEOREMS;
D O I
10.1007/s11425-018-9447-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following semilinear elliptic equation:{-Delta u=h(x,u)in omega,u > 0on partial differential omega,where omega is an exterior domain in Double-struck capital R(N)withN > 3,h: omega x Double-struck capital R+-> Double-struck capital R is a measurable function, and derive optimal nonexistence results of positive supersolutions. Our argument is based on a nonexistence result of positive supersolutions of a linear elliptic problem with Hardy potential. We also establish sharp nonexistence results of positive supersolutions to an elliptic system.
引用
收藏
页码:1307 / 1322
页数:16
相关论文
共 50 条