In situ investigation of pore clogging during discharge of a Li/O2 battery by electrochemical impedance spectroscopy

被引:47
|
作者
Bardenhagen, Ingo [1 ,2 ,3 ]
Yezerska, Olga [1 ]
Augustin, Matthias [1 ,4 ]
Fenske, Daniela [1 ]
Wittstock, Arne [2 ,3 ]
Baeumer, Marcus [2 ,3 ]
机构
[1] Fraunhofer Inst Mfg Technol & Adv Mat IFAM, D-28359 Bremen, Germany
[2] Univ Bremen, Inst Appl & Phys Chem, D-28359 Bremen, Germany
[3] Univ Bremen, Ctr Environm Res & Sustainable Technol, D-28359 Bremen, Germany
[4] Carl von Ossietzky Univ Oldenburg, Dept Phys, Energy & Semicond Res Lab, D-26129 Oldenburg, Germany
关键词
Lithium-oxygen battery; Impedance spectroscopy; Mesopores; Pore clogging; Carbon xerogel GDE; DIMETHYL-SULFOXIDE; LI-O-2; BATTERIES; LI; PERFORMANCE; ELECTROLYTE; DIFFUSION; PEROXIDE; FILM;
D O I
10.1016/j.jpowsour.2014.12.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The behavior of three gas diffusion electrodes (GDE) with macro- and mesopores is investigated by in situ electrochemical impedance spectroscopy (EIS) in the Li/O-2 battery system while discharging. Using a three electrode setup the current response from the anode (Li metal) and cathode (GDE) can be separated and the changes of the electrochemical processes at the GDE during discharge can be observed, exclusively. We identify up to four processes with different time constants which we assign to the lithium ion migration through a surface layer, the charge-transfer from the carbon surface to the molecular oxygen, the lithium ion and oxygen diffusion towards the cathode surface and, in case of the mesoporous materials, the lithium ion movement inside the pores, along the pore axis. The latter finding reflects that pore clogging of such is a limiting factor for the discharge of the Li/O-2 battery. A large mesopore volume as in the xerogel electrode, however, allows for a high storage capability and a long and constant oxygen reduction. We demonstrate that the three electrode EIS proves to be a powerful in situ diagnostic tool to determine the state and, hence, the reversibility of the reactions at the cathode. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 50 条
  • [1] In situ monitoring of discharge/charge processes in Li-O2 batteries by electrochemical impedance spectroscopy
    Landa-Medrano, Imanol
    Ruiz de Larramendi, Idoia
    Ortiz-Vitoriano, Nagore
    Pinedo, Ricardo
    Ignacio Ruiz de Larramendi, Jose
    Rojo, Teofilo
    JOURNAL OF POWER SOURCES, 2014, 249 : 110 - 117
  • [2] An Electrochemical Impedance Spectroscopy Investigation of the Overpotentials in Li-O2 Batteries
    Hojberg, Jonathan
    McCloskey, Bryan D.
    Hjelm, Johan
    Vegge, Tejs
    Johansen, Keld
    Norby, Poul
    Luntz, Alan C.
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) : 4039 - 4047
  • [3] In situ X-ray diffraction and electrochemical impedance spectroscopy of a nanoporous Li2FeSiO4/C cathode during the initial charge/discharge cycle of a Li-ion battery
    Zhou, Haitao
    Einarsrud, Mari-Ann
    Vullum-Bruer, Fride
    JOURNAL OF POWER SOURCES, 2013, 238 : 478 - 484
  • [4] Discharge characteristic of a non-aqueous electrolyte Li/O2 battery
    Zhang, Sheng S.
    Foster, Donald
    Read, Jeffrey
    JOURNAL OF POWER SOURCES, 2010, 195 (04) : 1235 - 1240
  • [5] Investigation of lead-acid battery water loss by in-situ electrochemical impedance spectroscopy
    Yang, Kun
    Pang, Zheyuan
    Song, Zhengxiang
    Wang, Songlei
    Li, Wanfeng
    Meng, Jinhao
    ELECTROCHIMICA ACTA, 2024, 484
  • [6] Investigation of Li-ion battery with Ac impedance spectroscopy
    Momma, T
    Tsuchiya, K
    Osaka, T
    LITHIUM BATTERIES, PROCEEDINGS, 2000, 99 (25): : 681 - 686
  • [7] Notable Reactivity of Acetonitrile Towards Li2O2/LiO2 Probed by NAP XPS During Li–O2 Battery Discharge
    Tatiana K. Zakharchenko
    Alina I. Belova
    Alexander S. Frolov
    Olesya O. Kapitanova
    Juan-Jesus Velasco-Velez
    Axel Knop-Gericke
    Denis Vyalikh
    Daniil M. Itkis
    Lada V. Yashina
    Topics in Catalysis, 2018, 61 : 2114 - 2122
  • [8] Triarylmethyl cation redox mediators enhance Li–O2 battery discharge capacities
    Erik J. Askins
    Marija R. Zoric
    Matthew Li
    Rachid Amine
    Khalil Amine
    Larry A. Curtiss
    Ksenija D. Glusac
    Nature Chemistry, 2023, 15 : 1247 - 1254
  • [9] Electrochemical Impedance Spectroscopy based voltage modeling of lithium Thionyl Chloride (Li∖SOCl2) primary battery at arbitrary discharge
    Zabara, Mohammed Ahmed
    Ulgut, Burak
    Electrochimica Acta, 2021, 334
  • [10] Electrochemical Impedance Spectroscopy based voltage modeling of lithium Thionyl Chloride (Li\SOCl2) primary battery at arbitrary discharge
    Zabara, Mohammed Ahmed
    Ulgut, Burak
    ELECTROCHIMICA ACTA, 2020, 334