Multi-view face detection using support vector machines and eigenspace modelling
被引:0
|
作者:
Li, YM
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, EnglandUniv London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, England
Li, YM
[1
]
Gong, SG
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, EnglandUniv London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, England
Gong, SG
[1
]
Sherrah, J
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, EnglandUniv London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, England
Sherrah, J
[1
]
Liddell, H
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, EnglandUniv London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, England
Liddell, H
[1
]
机构:
[1] Univ London Queen Mary & Westfield Coll, Dept Comp Sci, London E1 1NS, England
An approach to multi-view face detection based on head pose estimation is presented in this paper. Support Vector Regression is employed to solve the problem of pose estimation. Three methods, the eigenface method, the Support Vector Machine (SVM) based method, and a combination of the two methods, are investigated lire eigenface method, which seeks to estimate the overall probability distribution of patterns to be recognised, is fast bur less accurate because of the overlap of confidence distributions between face and non-face classes. On the other hand the SVM method, which tries to model the boundary of two classes to be classified, is more accurate but slower as the number of Support Vectors Is normally large. The combined method can achieve an improved performance by speeding up the computation and keeping the accuracy to a preset level. It can be used to automatically detect and track faces in face verification and identification systems.
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
Xie, Xijiong
Sun, Shiliang
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
Sun, Shiliang
ADVANCED DATA MINING AND APPLICATIONS, PT II,
2011,
7121
: 209
-
222
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
Xie, Xijiong
Sun, Shiliang
论文数: 0引用数: 0
h-index: 0
机构:
E China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R ChinaE China Normal Univ, Dept Comp Sci & Technol, Shanghai 200241, Peoples R China
机构:
Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R ChinaNingbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
Xie, Xijiong
Li, Yanfeng
论文数: 0引用数: 0
h-index: 0
机构:
Ningbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R ChinaNingbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China
Li, Yanfeng
Sun, Shiliang
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R ChinaNingbo Univ, Sch Informat Sci & Engn, Ningbo 315211, Peoples R China