Localization on three-dimensional manifolds

被引:54
|
作者
Willett, Brian [1 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
three-dimensional manifolds; N=2 supersymmetric theories; compact manifolds; GAUGE-THEORIES; MIRROR SYMMETRY; DUALITY;
D O I
10.1088/1751-8121/aa612f
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this review article we describe the localization of three dimensional N = 2 supersymmetric theories on compact manifolds, including the squashed sphere, S-b(3), the lens space, S-b(3)/Z(p), and S-2 x S-1. We describe how to write supersymmetric actions on these spaces, and then compute the partition functions and other supersymmetric observables by employing the localization argument. We briefly survey some applications of these computations.
引用
收藏
页数:57
相关论文
共 50 条
  • [1] Invariants of three-dimensional manifolds
    Gelfand, S
    Kazhdan, D
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) : 268 - 300
  • [2] Tabulation of three-dimensional manifolds
    Matveev, SV
    RUSSIAN MATHEMATICAL SURVEYS, 2005, 60 (04) : 673 - 698
  • [3] Three-dimensional Anosov flag manifolds
    Barbot, Thierry
    GEOMETRY & TOPOLOGY, 2010, 14 (01) : 153 - 191
  • [4] BOUNDARY SLOPES IN THREE-DIMENSIONAL MANIFOLDS
    Sbrodova, E. A.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2007, 13 (04): : 119 - 128
  • [5] Three-dimensional manifolds of states of motion
    Hotelling, Harold
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1925, 27 (1-4) : 329 - 344
  • [6] On three-dimensional lorentzian β-kenmotsu manifolds
    Yaliniz, A. Funda
    Yildiz, Ahmet
    Turan, Mine
    KUWAIT JOURNAL OF SCIENCE & ENGINEERING, 2009, 36 (2A): : 51 - 62
  • [7] Three-dimensional conformally symmetric manifolds
    E. Calviño-Louzao
    E. García-Río
    J. Seoane-Bascoy
    R. Vázquez-Lorenzo
    Annali di Matematica Pura ed Applicata (1923 -), 2014, 193 : 1661 - 1670
  • [8] Three-dimensional conformally symmetric manifolds
    Calvino-Louzao, E.
    Garcia-Rio, E.
    Seoane-Bascoy, J.
    Vazquez-Lorenzo, R.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (06) : 1661 - 1670
  • [9] Three-dimensional manifolds with poor spines
    A. Yu. Vesnin
    V. G. Turaev
    E. A. Fominykh
    Proceedings of the Steklov Institute of Mathematics, 2015, 288 : 29 - 38
  • [10] ON THREE-DIMENSIONAL HOMOGENEOUS FINSLER MANIFOLDS
    Tayebi, Akbar
    Najafi, Behzad
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2023, 38 (01): : 141 - 151