Maximum entropy low-rank matrix recovery

被引:0
|
作者
Mak, Simon [1 ]
Xie, Yao [1 ]
机构
[1] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a novel, information-theoretic mask construction method, called MaxEnt, for efficient data acquisition for low-rank matrix recovery. Fundamental to this design approach is the maximum entropy principle, which states that the measurement masks which maximize the entropy of observations also maximize the information gain on the unknown matrix X. Coupled with a low-rank stochastic model for X, such a principle (i) reveals novel connections between information-theoretic sampling, compressive sensing and coding theory, and (ii) yields efficient mask construction algorithms for recovering X, which significantly outperform random measurements. We demonstrate the usefulness of MaxEnt in two real-world applications on image recovery and text document indexing.
引用
收藏
页码:361 / 365
页数:5
相关论文
共 50 条
  • [1] Maximum Entropy Low-Rank Matrix Recovery
    Mak, Simon
    Xie, Yao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (05) : 886 - 901
  • [2] Quantization for low-rank matrix recovery
    Lybrand, Eric
    Saab, Rayan
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2019, 8 (01) : 161 - 180
  • [3] Sensitivity of low-rank matrix recovery
    Breiding, Paul
    Vannieuwenhoven, Nick
    NUMERISCHE MATHEMATIK, 2022, 152 (04) : 725 - 759
  • [4] Sensitivity of low-rank matrix recovery
    Paul Breiding
    Nick Vannieuwenhoven
    Numerische Mathematik, 2022, 152 : 725 - 759
  • [5] NONCONVEX ROBUST LOW-RANK MATRIX RECOVERY
    Li, Xiao
    Zhu, Zhihui
    So, Anthony Man-Cho
    Vidal, Rene
    SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 660 - 686
  • [6] Low-Rank Matrix Recovery with Unknown Correspondence
    Tang, Zhiwei
    Chang, Tsung-Hui
    Ye, Xiaojing
    Zha, Hongyuan
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 2111 - 2122
  • [7] LOW-RANK MATRIX RECOVERY OF DYNAMIC EVENTS
    Asif, M. Salman
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1215 - 1219
  • [8] Matrix recovery with implicitly low-rank data
    Xie, Xingyu
    Wu, Jianlong
    Liu, Guangcan
    Wang, Jun
    NEUROCOMPUTING, 2019, 334 : 219 - 226
  • [9] LOW-RANK MATRIX RECOVERY IN POISSON NOISE
    Cao, Yang
    Xie, Yao
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 384 - 388
  • [10] Accelerated algorithms for low-rank matrix recovery
    Zhang, Shuiping
    Tian, Jinwen
    MIPPR 2013: PARALLEL PROCESSING OF IMAGES AND OPTIMIZATION AND MEDICAL IMAGING PROCESSING, 2013, 8920