An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids

被引:222
|
作者
Hemmat Esfe, Mohammad [1 ]
Saedodin, Seyfolah [1 ]
Wongwises, Somchai [2 ]
Toghraie, Davood [3 ]
机构
[1] Semnan Univ, Fac Mech Engn, POB 3513119111, Semnan, Iran
[2] King Mongkuts Univ Technol Thonburi, Dept Mech Engn, Fac Engn, Fluid Mech Thermal Engn & Multiphase Flow Res Lab, Bangkok 10140, Thailand
[3] Islamic Azad Univ, Khomeinishahr Branch, Fac Mech Engn, Esfahan, Iran
关键词
Thermal conductivity; Dynamic viscosity; Nanofluid; Diameter; HEAT-TRANSFER CHARACTERISTICS; PARTICLE-SIZE; ENHANCEMENT; OXIDE;
D O I
10.1007/s10973-014-4328-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The addition of nanoparticles to a base fluid is one of the significant issues to enhance heat transfer. In this study, different nanofluids were developed by mixing a water base fluid with magnetic nanoparticles. Thermophysical properties such as thermal conductivity and viscosity of the obtained nanofluid were investigated. The effect of different nominal diameters of nanoparticles and concentrations of nanoparticles on the thermal conductivity and viscosity of nanofluids have been examined. Three different diameters of magnetic nanoparticles (about 37 nm, 71 nm, and 98 nm) have been tested in this experimental investigation. Experimental results indicate that thermal conductivity increases as volume fraction increases, and thermal conductivity of the nanofluid increases with a decrease of nanoparticle's size. Moreover, the nanofluid dynamics viscosity ratio increases with an increase in particle concentration and nanoparticle's diameter. This paper identifies several important issues that should be considered in future work.
引用
收藏
页码:1817 / 1824
页数:8
相关论文
共 50 条
  • [1] An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids
    Mohammad Hemmat Esfe
    Seyfolah Saedodin
    Somchai Wongwises
    Davood Toghraie
    Journal of Thermal Analysis and Calorimetry, 2015, 119 : 1817 - 1824
  • [2] Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids
    Tavman, Ismail
    Turgut, Alpaslan
    Chirtoc, Mihai
    Hadjov, Kliment
    Fudym, Olivier
    Tavman, Sebnem
    HEAT TRANSFER RESEARCH, 2010, 41 (03) : 339 - 351
  • [3] Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study
    Sundar, L. Syam
    Hortiguela, Maria J.
    Singh, Manoj K.
    Sousa, Antonio C. M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 76 : 245 - 255
  • [4] EXPERIMENTAL INVESTIGATION ON THERMAL CONDUCTIVITY AND VISCOSITY OF NANOFLUIDS: PARTICLE SIZE EFFECT
    Turgut, Alpaslan
    Saglanmak, Sahika
    Doganay, Serkan
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2016, 31 (01): : 95 - 103
  • [5] An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes
    Sadri, Rad
    Ahmadi, Goodarz
    Togun, Hussein
    Dahari, Mahidzal
    Kazi, Salim Newaz
    Sadeghinezhad, Emad
    Zubir, Nashrul
    NANOSCALE RESEARCH LETTERS, 2014, 9
  • [6] An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes
    Rad Sadri
    Goodarz Ahmadi
    Hussein Togun
    Mahidzal Dahari
    Salim Newaz Kazi
    Emad Sadeghinezhad
    Nashrul Zubir
    Nanoscale Research Letters, 9
  • [7] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Sunita Gaganpreet
    Applied Nanoscience, 2012, 2 : 325 - 331
  • [8] Effect of aggregation on thermal conductivity and viscosity of nanofluids
    Gaganpreet
    Srivastava, Sunita
    APPLIED NANOSCIENCE, 2012, 2 (03) : 325 - 331
  • [9] An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture
    Nabil, M. F.
    Azmi, W. H.
    Hamid, K. Abdul
    Mamat, Rizalman
    Hagos, Ftwi Y.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2017, 86 : 181 - 189
  • [10] AN INVESTIGATION ON THERMAL CONDUCTIVITY AND VISCOSITY OF WATER BASED NANOFLUIDS
    Tavman, I.
    Turgut, A.
    MICROFLUIDICS BASED MICROSYSTEMS: FUNDAMENTALS AND APPLICATIONS, 2010, : 139 - 162